1
|
Li F, Yang J, Wang M, Feng X, Li M, Zheng H, Ding S, Xu X. Revealing the Limitation Induced by Hydroxyl in Regulating Solvation Structure of Zn 2+ and Overcoming Challenges with Hybrid Additives towards Highly Stable Zinc Anodes. CHEMSUSCHEM 2024; 17:e202401073. [PMID: 38972841 DOI: 10.1002/cssc.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
In the field of electrolyte design for aqueous zinc-ion batteries (AZIBs), additives containing hydroxyl have been demonstrated to effectively modulate the solvation structure of Zn2+. However, reported studies typically focus solely on the effectiveness of hydroxyl while neglecting the issues that emerge during solvation structure regulation. The strong electron-attracting capability of Zn2+ attracts electrons from the oxygen in hydroxyl, thereby weakening the strength of hydroxyl, the hydrogen evolution reaction (HER) is also pronounced. This work innovatively reveals the limitation of hydroxyl-containing additives and proposes a synergistic regulation strategy based on hybrid additives. Arginine with a high isoelectric point is introduced into the electrolyte system containing hydroxyl additives. The protonation effect and electrostatic attraction of arginine enable it to absorb protons at the anode released by the weakened hydroxyl, thereby compensating for the limitation of hydroxyl additives. Under the synergistic action of hybrid additives, the Zn|Zn battery achieved stable deposition/stripping for over 1200 hours under 10 mA cm-2 and 10 mAh cm-2. Moreover, the Zn|Cu battery cycled for over 570 hours with a high Coulombic efficiency of 99.82 %. This study presents a pioneering perspective for the further application of AZIBs.
Collapse
Affiliation(s)
- Fuxiang Li
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Jilin Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Minghui Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Xiang Feng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Mingyan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Hong Zheng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Shujiang Ding
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| | - Xin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049, China
| |
Collapse
|
2
|
Liang H, Wu J, Li J, Wang J, Yang Z, Wu Y. Achieving Dendrite-Free and By-Product-Free Aqueous Zn-Ion Battery Anode via Nicotinic Acid Electrolyte Additive with Molecule-Ion Conversion Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402595. [PMID: 38764288 DOI: 10.1002/smll.202402595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Indexed: 05/21/2024]
Abstract
The widespread adoption of aqueous Zn ion batteries is hindered by the instability of the Zn anode. Herein, an elegant strategy is proposed to enhance the stability of Zn anode by incorporating nicotinic acid (NA), an additive with a unique molecule-ion conversion mechanism, to optimize the anode/electrolyte interface and the typical ZnSO4 electrolyte system. Experimental characterization and theoretical calculations demonstrate that the NA additive preferentially replaces H2O in the original solvation shell and adsorbs onto the Zn anode surface upon conversion from molecule to ion in the electrolyte environment, thereby suppressing side reactions arising from activated H2O decomposition and stochastic growth of Zn dendrites. Simultaneously, such a molecule-to-ion conversion mechanism may induce preferential deposition of Zn along the (002) plane. Benefiting from it, the Zn||Zn symmetric battery cycles stably for 2500 h at 1 mA cm-2, 1 mAh cm-2. More encouragingly, the Zn||AC full batteries and the Zn||AC full batteries using NA electrolyte and Zn||VO2 full batteries also exhibit excellent performance improvements. This work emphasizes the role of variation in the form of additives (especially weak acid-based additives) in fine-tuning the solvation structure and the anode/electrolyte interface, hopefully enhancing the performance of various aqueous metal batteries.
Collapse
Affiliation(s)
- Hanhao Liang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jian Wu
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jiaming Li
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jianglin Wang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Zhanhong Yang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yuping Wu
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Chimtali PJ, Yang X, Zhou Q, Wei S, Mohamed Z, Akhtar H, Al-Mahgari A, Zhou Y, Xu H, Zhang Z, Cao D, Chen S, Zhu K, Guo X, Shou H, Wu X, Wang C, Song L. N-methyl Formamide Electrolyte Additive Enabling Highly Reversible Zn Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400673. [PMID: 38700057 DOI: 10.1002/smll.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.
Collapse
Affiliation(s)
- Peter Joseph Chimtali
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiya Yang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Quan Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zeinab Mohamed
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hassan Akhtar
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Aad Al-Mahgari
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hanchen Xu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zijun Zhang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Dengfeng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiaojun Wu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
4
|
Chen J, Li S, Li F, Sun W, Nie Z, Xiao B, Cheng Y, Xu X. Integrated Interfacial Modulation Strategy: Trace Sodium Hydroxyethyl Sulfonate Additive for Extended-Life Zn Anode Based on Anion Adsorption and Electrostatic Shield. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42153-42163. [PMID: 39091198 DOI: 10.1021/acsami.4c06319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are poised to play a pivotal part in meeting the growing demands for energy storage and powering portable electronics for their superior security, affordability, and environmentally friendly characteristics. However, the detrimental side reactions occurring at the zinc anode and the dendrite caused by uneven zinc plating/stripping have greatly compromised the cycling life of AZIBs, thereby impeding their practical prospects. In this study, the interfacial comodulation strategy was employed by combining the "electrostatic shielding" effect of cations with the characteristic adsorption of anions. Two molar ZnSO4 served as the matrix, and sodium hydroxyethyl sulfonate (SHES) was selected as a low-cost, nontoxic additive. Experimental results confirm that SHES and zinc anode exhibit robust interactions that lead to the formation of an electrostatic shield and a dynamic adsorption layer at the interface, thereby suppressing hydrogen evolution and corrosion. The combined "electrostatic shielding" effect of sodium ions and the robust characteristic adsorption of hydroxyethyl sulfonate anions serve to guide the directed three-dimensional (3D) diffusion of Zn2+, facilitating rapid, stable, and uniform deposition of zinc. Due to these effects, incorporating 0.2 M SHES as an additive extends the cycle life beyond 3600 h and enables a highly reversible process of deposition and stripping in symmetric cells. Additionally, the Zn-Cu half-cell exhibits reliable cycling for over 1400 cycles, achieving an average Coulombic efficiency of 99.6%. Moreover, the introduction of this additive substantially enhances the performance of Zn-MnO2 and Zn-NH4V4O10 full cells. This study demonstrates the practical feasibility of achieving anodes with high reversibility in AZIBs through the implementation of a strategy that involves anion adsorption at the interface, which holds paramount significance for the practical application of AZIBs.
Collapse
Affiliation(s)
- Jingzhe Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sateng Li
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fuxiang Li
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Weiyu Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zixiao Nie
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bing Xiao
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
5
|
Cao J, Zhao F, Guan W, Yang X, Zhao Q, Gao L, Ren X, Wu G, Liu A. Additives for Aqueous Zinc-Ion Batteries: Recent Progress, Mechanism Analysis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400221. [PMID: 38586921 DOI: 10.1002/smll.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) stand out as a promising next-generation electrochemical energy storage technology, offering notable advantages such as high specific capacity, enhanced safety, and cost-effectiveness. However, the application of aqueous electrolytes introduces challenges: Zn dendrite formation and parasitic reactions at the anode, as well as dissolution, electrostatic interaction, and by-product formation at the cathode. In addressing these electrode-centric problems, additive engineering has emerged as an effective strategy. This review delves into the latest advancements in electrolyte additives for ZIBs, emphasizing their role in resolving the existing issues. Key focus areas include improving morphology and reducing side reactions during battery cycling using synergistic effects of modulating anode interface regulation, zinc facet control, and restructuring of hydrogen bonds and solvation sheaths. Special attention is given to the efficacy of amino acids and zwitterions due to their multifunction to improve the cycling performance of batteries concerning cycle stability and lifespan. Additionally, the recent additive advancements are studied for low-temperature and extreme weather applications meticulously. This review concludes with a holistic look at the future of additive engineering, underscoring its critical role in advancing ZIB performance amidst the complexities and challenges of electrolyte additives.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Weixin Guan
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|