1
|
Mihai IM, Wang G. Biomarkers for predicting bladder cancer therapy response. Oncol Res 2025; 33:533-547. [PMID: 40109853 PMCID: PMC11915070 DOI: 10.32604/or.2024.055155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/08/2024] [Indexed: 03/22/2025] Open
Abstract
The advent of precision medicine has underscored the importance of biomarkers in predicting therapy response for bladder cancer, a malignancy marked by considerable heterogeneity. This review critically examines the current landscape of biomarkers to forecast treatment outcomes in bladder cancer patients. We explore a range of biomarkers, including genetic, epigenetic, proteomic, and transcriptomic indicators, from multiple sample sources, including urine, tumor tissue and blood, assessing their efficacy in predicting responses to chemotherapy, immunotherapy, and targeted therapies. Despite promising developments, the translation of these biomarkers into clinical practice faces significant challenges, such as variability in biomarker performance, the necessity for large-scale validation studies, and the integration of biomarker testing into routine clinical workflows. We also highlight the need for standardized methodologies and robust assays to ensure consistency and reliability. Future directions point towards longitudinal studies and the development of combination biomarker panels to enhance predictive accuracy. This review emphasizes the transformative potential of predictive biomarkers in improving patient outcomes and advocates for continued collaborative efforts to overcome existing barriers in this rapidly evolving field.
Collapse
Affiliation(s)
- Ioana Maria Mihai
- Department of Pathology and Laboratory Medicine, British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
2
|
Zeng Y, Lv W, Tao H, Li C, Jiang S, Liang Y, Chen C, Yu T, Li Y, Wu S, Cui X, Liang N, Wang P, Xu H, Dong J, Teng H, Chen K, Mu K, Fan T, Cen X, Xu Z, Zhu M, Wang W, Mi J, Xiang X, Dong W, Yang H, Bolund L, Lin L, Song J, Song X, Luo Y, Lin C, Han P. Mapping the chromothripsis landscape in urothelial carcinoma unravels great intratumoral and intertumoral heterogeneity. iScience 2025; 28:111510. [PMID: 39790556 PMCID: PMC11714673 DOI: 10.1016/j.isci.2024.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/24/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Chromothripsis, a hallmark of cancer, is characterized by extensive and localized DNA rearrangements involving one or a few chromosomes. However, its genome-wide frequency and characteristics in urothelial carcinoma (UC) remain largely unknown. Here, by analyzing single-regional and multi-regional whole-genome sequencing (WGS), we present the chromothripsis blueprint in 488 UC patients. Chromothripsis events exhibit significant intertumoral heterogeneity, being detected in 41% of UC patients, with an increase from 30% in non-muscle-invasive disease (Ta/1) to 53% in muscle-invasive disease (T2-4). The presence of chromothripsis correlates with an unstable cancer genome and poor clinical outcomes. Analysis of multi-regional WGS data from 52 patients revealed pronounced intratumoral heterogeneity with chromothripsis events detectable only in specific tumor regions rather than uniformly across all areas. Chromothripsis events evolve under positive selection and contribute to tumor dissemination. This study presents a comprehensive genome-wide chromothripsis landscape in UC, highlighting the significance of chromothripsis in UC development.
Collapse
Affiliation(s)
- Yuchen Zeng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wei Lv
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Huiying Tao
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong 264003, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Conghui Li
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuan Liang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chen Chen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tianxi Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xin Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ning Liang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Ping Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jingjing Dong
- Department of General Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Mu
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China
| | - Tianda Fan
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaoping Cen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ming Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenting Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Wei Dong
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lars Bolund
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jinzhao Song
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Peng Han
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
3
|
Yao C, Wang Q, Lu X, Chen X, Li Z. Hydrogel-Based Microdroplet Ensembles Encapsulating Multiplexed EXPAR Assays for Trichromic Digital Profiling of MicroRNAs and in-Depth Classification of Primary Urethral Cancers. NANO LETTERS 2024; 24:15861-15869. [PMID: 39585792 DOI: 10.1021/acs.nanolett.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The primary challenge in microarray-based biological analysis lies in achieving the sensitive and specific detection of single-molecule targets while ensuring high reproducibility. A user-friendly digital imaging platform has been developed for the encoded trichromic profiling of circulating microRNAs (miRNAs). This platform replaces the traditional exponential polymerase amplification reaction (EXPAR) conducted on the microliter scale with a system that confines the amplification process within thousands of femtoliter-sized microdroplet reactors, cross-linked from tetra-armed poly(ethylene glycol) acrylate (Tetra-PEGA) and poly(ethylene glycol) dithiol (HS-PEG-SH), thus offering significant advantages, including minimal sample input, enhanced reactivity, and simplified analytical procedures. The quantitative analysis relies on digital counting of fluorescently positive microdroplets, each containing an individual miRNA sequence. This approach significantly reduces nonspecific amplification and improves sensitivity by over 2 orders of magnitude. The system has shown great potential in differentiating between subtypes of primary urethral carcinoma, suggesting its practical application in routine cancer diagnostics through simple urinalysis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qiang Wang
- Department of Radiology, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
4
|
Dayati P, Shakhssalim N, Allameh A. Over-expression of KRT17 and MDK genes at mRNA levels in urine-exfoliated cells is associated with early non-invasive diagnosis of non-muscle-invasive bladder cancer. Clin Biochem 2024; 131-132:110808. [PMID: 39069115 DOI: 10.1016/j.clinbiochem.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Current diagnostic approaches for bladder cancer (BLCA) are often invasive or lack the required sensitivity and specificity. This underscores the need for an early non-invasive diagnostic test for BLCA. This work aimed to explore the potential of molecular markers in urine-exfoliated cells for the diagnosis of non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS Urine specimens (n = 140) were collected from NMIBC patients (n = 68) and control subjects (31 healthy volunteers and 41 non-cancer patients with common urological diseases [CUD]. Total RNA was extracted from the cells isolated from urine specimens. mRNA expression of selected genes: CDC20, KRT15, FOXM1, CXCR2, UPK1B, MDK, KRT20, and KRT17 was determined using RT-qPCR. The receiver operating characteristic (ROC) curve was then plotted to obtain the area under the curve (AUC), specificity, and sensitivity of the urinary mRNA markers. RESULTS The expression of CDC20, MDK, UPK1B, FOXM1, KRT17, and KRT20 was up-regulated in samples obtained from low- and high-grade pathological grades of NMIBC compared to that measured in healthy subjects. Notably, MDK and KRT17 mRNA levels in the low- and high-grade cases were substantially higher than in normal and CUD groups. The AUC of the KRT17 and MDK combination in diagnosing NMIBC was 0.92, surpassing that of single genes. The sensitivity and specificity of the KRT17 and MDK combination were 74% and 94%, respectively. In diagnosing low-grade from healthy and CUD groups, analysis of the KRT17 and MDK combination yielded AUCs of 0.94 and 0.95, respectively, with sensitivities of 85% and 97%, and specificities of 93% and 85%. CONCLUSION The findings of this study revealed that KRT17 and MDK together are potential urine-based biomarkers for early diagnosis of NMIBC.
Collapse
Affiliation(s)
- Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasser Shakhssalim
- Urology and Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Dimitrov G, Mangaldzhiev R, Slavov C, Popov E. Contemporary Molecular Markers for Predicting Systemic Treatment Response in Urothelial Bladder Cancer: A Narrative Review. Cancers (Basel) 2024; 16:3056. [PMID: 39272913 PMCID: PMC11394076 DOI: 10.3390/cancers16173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The search for dependable molecular biomarkers to enhance routine clinical practice is a compelling challenge across all oncology fields. Urothelial bladder carcinoma, known for its significant heterogeneity, presents difficulties in predicting responses to systemic therapies and outcomes post-radical cystectomy. Recent advancements in molecular cancer biology offer promising avenues to understand the disease's biology and identify emerging predictive biomarkers. Stratifying patients based on their recurrence risk post-curative treatment or predicting the efficacy of conventional and targeted therapies could catalyze personalized treatment selection and disease surveillance. Despite progress, reliable molecular biomarkers to forecast responses to systemic agents, in neoadjuvant, adjuvant, or palliative treatment settings, are still lacking, underscoring an urgent unmet need. This review aims to delve into the utilization of current and emerging molecular signatures across various stages of urothelial bladder carcinoma to predict responses to systemic therapy.
Collapse
Affiliation(s)
- George Dimitrov
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Radoslav Mangaldzhiev
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Chavdar Slavov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Elenko Popov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| |
Collapse
|
6
|
Bao Y, Sui X, Wang X, Qu N, Xie Y, Cong Y, Cao X. Extrachromosomal circular DNA landscape of breast cancer with lymph node metastasis. Int J Cancer 2024; 155:756-765. [PMID: 38693790 DOI: 10.1002/ijc.34985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer (BC) is a complex disease with diverse manifestations, often resulting in lymph node metastasis (LNM) and impacting patient prognosis. Extrachromosomal circular DNA (eccDNA) has emerged as a key player in tumorigenesis, yet its contribution to BC LNM remains elusive. Here, we examined primary tumors and matched LNM tissues from 19 BC patients using the Circle-Seq method. We identified a median count of 44,682 eccDNA in primary tumor tissues and 38,057 in their paired LNM tissues. Furthermore, a ladder-like size distribution is observed in both primary tumor and LNM tissues. Meanwhile, similar repeat sequence distribution and GC content are identified from both primary tissue and LNM tissues. Finally, we found that eccDNA from both groups are flanked with palindromic trinucleotide motifs. These observations indicate that eccDNA of primary tumor and LNM tissues are from similar chromosomal origins. However, a subset of miRNA-associated eccDNA displayed selective enrichment in metastatic lesions, such as miR-6730 and miR-548AA1 genes. This observation implicates the function of miRNA-related eccDNA in the metastatic cascade. Our study uncovers the potential significance of these unique eccDNA molecules, shedding light on their role in cancer metastasis.
Collapse
Affiliation(s)
- Yuhan Bao
- Breast Center, The Second Hospital of Shandong University, Jinan, China
| | - Xiaolong Sui
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaofei Wang
- Department of Ultrasound, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Nina Qu
- Department of Ultrasound, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yanjie Xie
- Department of Ultrasound, Laiyang Central Hospital of Yantai City, Yantai, China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaoli Cao
- Department of Ultrasound, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| |
Collapse
|
7
|
Parrao D, Lizana N, Saavedra C, Larrañaga M, Lindsay CB, San Francisco IF, Bravo JC. Active Surveillance in Non-Muscle Invasive Bladder Cancer, the Potential Role of Biomarkers: A Systematic Review. Curr Oncol 2024; 31:2201-2220. [PMID: 38668066 PMCID: PMC11048875 DOI: 10.3390/curroncol31040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common cause of cancer worldwide and is the thirteenth leading cause of cancer mortality. The non-muscle invasive (NMI) variant represents 75% of cases and has a mortality rate of less than 1%; however, it has a high recurrence rate. The gold standard of management is transurethral resection in the case of new lesions. However, this is associated with significant morbidity and costs, so the reduction of these procedures would contribute to reducing complications, morbidity, and the burden to the health system associated with therapy. In this clinical scenario, strategies such as active surveillance have emerged that propose to manage low-risk BC with follow-up; however, due to the low evidence available, this is a strategy that is underutilized by clinicians. On the other hand, in the era of biomarkers, it is increasingly known how to use them as a tool in BC. Therefore, the aim of this review is to provide to clinical practitioners the evidence available to date on AS and the potential role of biomarkers in this therapeutic strategy in patients with low-grade/risk NMIBC. This is the first review linking use of biomarkers and active surveillance, including 29 articles.
Collapse
Affiliation(s)
- Diego Parrao
- School of Medicine, University of O’Higgins, Rancagua 282000, Chile; (D.P.); (N.L.); (C.S.)
| | - Nemecio Lizana
- School of Medicine, University of O’Higgins, Rancagua 282000, Chile; (D.P.); (N.L.); (C.S.)
| | - Catalina Saavedra
- School of Medicine, University of O’Higgins, Rancagua 282000, Chile; (D.P.); (N.L.); (C.S.)
| | - Matías Larrañaga
- Department of Urology, Libertador Bernardo O’Higgins Regional Hospital, Rancagua 282000, Chile;
| | - Carolina B. Lindsay
- Research Department, Libertador Bernardo O’Higgins Regional Hospital, Rancagua 282000, Chile;
| | - Ignacio F. San Francisco
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Juan Cristóbal Bravo
- Department of Urology, Libertador Bernardo O’Higgins Regional Hospital, Rancagua 282000, Chile;
| |
Collapse
|
8
|
Torres-Bustamante MI, Vazquez-Urrutia JR, Solorzano-Ibarra F, Ortiz-Lazareno PC. The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. Int J Mol Sci 2024; 25:2178. [PMID: 38396855 PMCID: PMC10889402 DOI: 10.3390/ijms25042178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common types of cancer worldwide, with significant differences in survival depending on the degree of muscle and surrounding tissue invasion. For this reason, the timely detection and monitoring of the disease are important. Surveillance cystoscopy is an invasive, costly, and uncomfortable procedure to monitor BC, raising the need for new, less invasive alternatives. In this scenario, microRNAs (miRNAs) represent attractive prognostic tools given their role as gene regulators in different biological processes, tissue expression, and their ease of evaluation in liquid samples. In cancer, miRNA expression is dynamically modified depending on the tumor type and cancer staging, making them potential biomarkers. This review describes the most recent studies in the last five years exploring the utility of miRNA-based strategies to monitor progression, stratify, and predict relevant clinical outcomes of bladder cancer. Several studies have shown that multimarker miRNA models can better predict overall survival, recurrence, and progression in BC patients than traditional strategies, especially when combining miRNA expression with clinicopathological variables. Future studies should focus on validating their use in different cohorts and liquid samples.
Collapse
Affiliation(s)
| | - Jorge Raul Vazquez-Urrutia
- Department of Medicine, The Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Fabiola Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Estancias Posdoctorales por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONACYT), México City 03940, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|