1
|
Ren Z, Wang Y, Jiang D, Liu Y, Yang X, Wang T, Zhu J, Wang W, Chen Q, Zhang Y. PD1 + Treg cell remodeling promotes immune homeostasis within peripheral blood and tumor microenvironment after microparticles-transarterial chemoembolization in hepatocellular carcinoma. Cancer Immunol Immunother 2025; 74:109. [PMID: 39937280 PMCID: PMC11822157 DOI: 10.1007/s00262-025-03962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
The effects of transarterial chemoembolization (TACE) on the systemic immune in hepatocellular carcinoma (HCC) are not well understood. We aimed to reveal the temporal and spatial changes in the immune profile of peripheral blood and tumor tissues in HCC patients following TACE. Eighty-four HCC patients were included, 20 of whom received TACE with a median follow-up of 28 months. Immune cell proportion within peripheral blood was profiled with flow cytometry, and therapeutic efficacy was evaluated by imaging examinations. Additionally, cell distribution within tumor microenvironment (TME) were compared between the necrotic tumor infiltration zone (N-IZ) and the residual tumor infiltration zone (R-IZ) by multiplex immunofluorescence. Among 20 patients, 25% (5/20) achieved complete response, and 75% (15/20) showed partial response. Fourteen patients received combinational targeted therapy and immunotherapy and the median progression-free survival was 15.5 months. Compared to healthy individuals, HCC exhibited significantly higher proportions of regulatory T cells (Tregs) and programmed death-1 receptor (PD1)+ Tregs within peripheral blood. PD1+ Treg cells, PD1+ CD4+ T cells and PD1+ CD8+ T cells decreased significantly within peripheral blood after TACE. In TME, N-IZ showed significantly lower CD4+ T, CD8+ T and FOXP3+ Tregs, higher PD1+ CD8+/CD8+ and PD1+ CD8+/ PD1+ FOXP3+. Moreover, the spatial distance between CD8+ T cells and the nearest FOXP3+ Tregs in N-IZ was significantly greater than in R-IZ. Our findings demonstrated that TACE could both remodel the immune components in peripheral blood and TME, strengthening the rationale for developing immunotherapy alongside TACE.
Collapse
Affiliation(s)
- Zhizhong Ren
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yaqin Wang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | | | - Ying Liu
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiaowei Yang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Tianxiao Wang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Junqi Zhu
- Thorgene Co., Ltd., Beijing, 100176, China
| | - Wenya Wang
- Medical Research Center, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, 102218, China.
| | - Qian Chen
- Thorgene Co., Ltd., Beijing, 100176, China.
| | - Yuewei Zhang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
2
|
Porter G, Norris MD, Apte M, Merlot AM. Spatial profiling of endoplasmic reticulum stress markers in tumor associated cells predicts patient outcomes in pancreatic cancer. Neoplasia 2025; 60:101115. [PMID: 39818177 PMCID: PMC11786694 DOI: 10.1016/j.neo.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
INTRODUCTION The impact of endoplasmic reticulum (ER) stress in tumor-associated cells, such as cancer associated fibroblasts (CAFs), immune cells and endothelial cells, on patient outcomes in clinical specimens have not been examined. For the first time, we characterized the expression and spatial locations of ER stress markers, BiP and CHOP, in tumor-associated cells and assessed their prognostic significance in a panel of pancreatic ductal adenocarcinoma (PDAC) patient samples. METHODS Multiplex immunofluorescence was performed on tumor microarrays and images were analyzed using HALO AI software. RESULTS BiP and CHOP were upregulated in CAFs and endothelial cells in PDAC sections relative to non-neoplastic pancreas sections. High BiP expression in CAFs and endothelial cells was associated with greater vascular invasion and in immune cells was correlated with increased tumor size. High CHOP expression in immune cells correlated with poor patient survival. CAFs and immune cells were more likely to express BiP or CHOP when located close (< 20 μm) to tumor cells. High expression of CHOP in CAFs close to tumor cells correlated with improved patient survival. CONCLUSION For the first time, this study demonstrated that ER stress occurs in CAFs and immune cells predominantly in proximity to tumor cells in PDAC patient tissue. The correlation of high ER stress in immune cells with poor patient survival highlights the importance of the TME and the use of spatial analysis for the identification of novel biomarkers.
Collapse
Affiliation(s)
- Georgia Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical Campuses, Faculty of Medicine and Health, UNSW Sydney, NSW 2052, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Angelica M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2031, Australia.
| |
Collapse
|
3
|
Sia J, D’Souza C, Castle B, Huang YK, Aw Yeang HX, Idrizi R, Jana M, Siva S, Phillips C, Neeson P. Immunological responses to brain metastasis stereotactic radiosurgery in patient-matched longitudinal blood and tumour samples. Clin Transl Radiat Oncol 2024; 49:100863. [PMID: 39381631 PMCID: PMC11460619 DOI: 10.1016/j.ctro.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Background Stereotactic radiosurgery (SRS) is highly effective as focal treatment for brain metastases (BrMs), but whether it can promote anti-tumour immune responses that synergise with immunotherapy remains unclear. We investigated this by examining blood samples from a clinical trial for HER2-amplified breast cancer (HER2-BC) BrMs, matched with longitudinal HER2-BC BrM samples resected from the same location in the same patient. Methods Blood samples from 10 patients taken pre- and 7-14 days post-SRS were analysed by mass and flow cytometry. One patient received pre-operative SRS for a BrM that recurred 7 months after resection, followed by planned re-resection 8 days post-SRS. Pre- and post-SRS tumours from this patient were analysed by bulk RNAseq, multiplex immunohistochemistry (mIHC), and TCR sequencing. Results Monocytes, central memory CD8+ T and regulatory T cells were enriched in blood post-SRS, together with increased MHC-II expression on monocytes, conventional DCs, and monocytic MDSCs. In tumour, SRS upregulated antigen presentation, T cell proliferation and T cell co-stimulation signatures, alongside an influx of tumour-associated macrophages (TAMs) and CD4+ T cells. Specifically, TAMs and CD4+ T cells, but not CD8+ T cells, demonstrated spatial co-localisation post-SRS. These TAMs were lowly PD-L1 expressing, but CD4+ T cells showed increased PD-1 expression. A sizeable proportion of T cell clonotypes were retained post-SRS, and four clones demonstrated significant, non-stochastic expansion. Conclusion Systemic and local immunological changes in this homogenous patient cohort suggest that SRS may facilitate MHC-II-restricted T cell priming responses involving the monocyte-macrophage lineage and CD4+ T cells, which should be further explored.
Collapse
Affiliation(s)
- Joseph Sia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Criselle D’Souza
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Becky Castle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Yu-Kuan Huang
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Han Xiang Aw Yeang
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Centre for Advanced Histology and Microscopy, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Rejhan Idrizi
- Centre for Advanced Histology and Microscopy, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Metta Jana
- Centre for Advanced Histology and Microscopy, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Claire Phillips
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| |
Collapse
|
4
|
Soeratram TTD, Beentjes I, Egthuijsen JMP, Mookhoek A, Lange MM, Meershoek-Klein Kranenbarg E, Hartgrink HH, van de Velde CJH, Ylstra B, van Laarhoven HWM, van Grieken NCT. A biopsy-based Immunoscore in patients with treatment-naïve resectable gastric cancer. Ther Adv Med Oncol 2024; 16:17588359241287747. [PMID: 39444424 PMCID: PMC11497501 DOI: 10.1177/17588359241287747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prognostic significance of T-cell densities in gastric cancer (GC) was previously demonstrated in surgical resection specimens. For prognosis or response prediction, it is preferable to identify biomarkers in pre-treatment biopsies; yet, its representativeness of the tumor immune microenvironment is unclear. Objectives This study aimed to evaluate the concordance and prognostic value of T-cell densities in paired biopsies and resections. Methods Paired diagnostic biopsies and surgical resections were available for 131 patients with resectable GC who were treated with surgery alone in the D1/D2 trial. T-cell markers such as CD3, CD45RO, CD8, FOXP3, and Granzyme B were assessed by immunohistochemistry and digitally quantified. Tumors were categorized into high and low subgroups for each marker. The concordance between biopsies and resections was determined for each marker with Cohen's κ. To determine the prognostic value of T cells in biopsies, Cox regression was performed. Results The concordance of T-cell high and low tumors was moderate for CD8 (κ = 0.58) and weak for other markers (κ < 0.3). CD8 and FOXP3 densities in biopsies were significantly associated with cancer-specific survival. Multivariable analysis showed that an Immunoscore incorporating CD8 and FOXP3 served as an independent prognostic marker (low vs high: hazard ratio 3.40, 95% confidence interval: 1.27-9.10; p = 0.015). Conclusion Although the concordance in T-cell densities between biopsy and resection specimens is modest, a biopsy-based Immunoscore identified distinct biological subgroups with prognostic potential. To fully evaluate the prognostic performance of this biopsy Immunoscore, additional studies are warranted.
Collapse
Affiliation(s)
- Tanya T. D. Soeratram
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Isis Beentjes
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jacqueline M. P. Egthuijsen
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Aart Mookhoek
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Marilyne M. Lange
- Department of Pathology, Amsterdam UMC location VUmc Amsterdam, Amsterdam, The Netherlands
| | | | - Henk H. Hartgrink
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bauke Ylstra
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Hanneke W. M. van Laarhoven
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole C. T. van Grieken
- Department of Pathology, Amsterdam UMC location VUmc, Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Scheuermann S, Kristmann B, Engelmann F, Nuernbergk A, Scheuermann D, Koloseus M, Abed T, Solass W, Seitz CM. Unveiling spatial complexity in solid tumor immune microenvironments through multiplexed imaging. Front Immunol 2024; 15:1383932. [PMID: 38566984 PMCID: PMC10985204 DOI: 10.3389/fimmu.2024.1383932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Deciphering cellular components and the spatial interaction network of the tumor immune microenvironment (TIME) of solid tumors is pivotal for understanding biologically relevant cross-talks and, ultimately, advancing therapies. Multiplexed tissue imaging provides a powerful tool to elucidate spatial complexity in a holistic manner. We established and cross-validated a comprehensive immunophenotyping panel comprising over 121 markers for multiplexed tissue imaging using MACSima™ imaging cyclic staining (MICS) alongside an end-to-end analysis workflow. Applying this panel and workflow to primary cancer tissues, we characterized tumor heterogeneity, investigated potential therapeutical targets, conducted in-depth profiling of cell types and states, sub-phenotyped T cells within the TIME, and scrutinized cellular neighborhoods of diverse T cell subsets. Our findings highlight the advantage of spatial profiling, revealing immunosuppressive molecular signatures of tumor-associated myeloid cells interacting with neighboring exhausted, PD1high T cells in the TIME of hepatocellular carcinoma (HCC). This study establishes a robust framework for spatial exploration of TIMEs in solid tumors and underscores the potency of multiplexed tissue imaging and ultra-deep cell phenotyping in unraveling clinically relevant tumor components.
Collapse
Affiliation(s)
- Sophia Scheuermann
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Tuebingen, Tuebingen, Germany
| | - Beate Kristmann
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Fabienne Engelmann
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Alice Nuernbergk
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - David Scheuermann
- School of Business and Economics, Faculty of Economics and Social Sciences, University of Tuebingen, Tuebingen, Germany
| | - Marie Koloseus
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Tayeb Abed
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Wiebke Solass
- Institute of Tissue Medicine and Pathology (ITMP), University of Bern, Bern, Switzerland
| | - Christian M. Seitz
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Akkanapally V, Bai XF, Basu S. Therapeutic Immunomodulation in Gastric Cancer. Cancers (Basel) 2024; 16:560. [PMID: 38339311 PMCID: PMC10854796 DOI: 10.3390/cancers16030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric carcinoma, being one of the most prevalent types of solid tumors, has emerged as the third leading cause of death worldwide. The symptoms of gastric cancer (GC) are typically complex, which makes early detection challenging. Immune checkpoint inhibition has become the new standard targeted therapy for advanced or metastatic GC. It is currently being explored in various combinations, both with and without chemotherapy, across multiple therapies in clinical trials. Immunotherapy can stimulate immune responses in GC patients, leading to the destruction of cancer cells. Compared with traditional therapies, immunotherapy has shown strong effectiveness with tolerable toxicity levels. Hence, this innovative approach to the treatment of advanced GC has gained popularity. In this review, we have outlined the recent advancements in immunotherapy for advanced GC, including immune checkpoint inhibitors, cancer vaccines, vascular endothelial growth factor-A inhibitors, and chimeric antigen receptor T-cell therapy. Our current emphasis is on examining the immunotherapies presently employed in clinical settings, addressing the existing challenges associated with these therapeutic approaches, and exploring promising strategies to overcome their limitations.
Collapse
Affiliation(s)
- Venu Akkanapally
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (V.A.); (X.-F.B.)
| | - Xue-Feng Bai
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (V.A.); (X.-F.B.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sujit Basu
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (V.A.); (X.-F.B.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Teer L, Yaddanapudi K, Chen J. Biophysical Control of the Glioblastoma Immunosuppressive Microenvironment: Opportunities for Immunotherapy. Bioengineering (Basel) 2024; 11:93. [PMID: 38247970 PMCID: PMC10813491 DOI: 10.3390/bioengineering11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
GBM is the most aggressive and common form of primary brain cancer with a dismal prognosis. Current GBM treatments have not improved patient survival, due to the propensity for tumor cell adaptation and immune evasion, leading to a persistent progression of the disease. In recent years, the tumor microenvironment (TME) has been identified as a critical regulator of these pro-tumorigenic changes, providing a complex array of biomolecular and biophysical signals that facilitate evasion strategies by modulating tumor cells, stromal cells, and immune populations. Efforts to unravel these complex TME interactions are necessary to improve GBM therapy. Immunotherapy is a promising treatment strategy that utilizes a patient's own immune system for tumor eradication and has exhibited exciting results in many cancer types; however, the highly immunosuppressive interactions between the immune cell populations and the GBM TME continue to present challenges. In order to elucidate these interactions, novel bioengineering models are being employed to decipher the mechanisms of immunologically "cold" GBMs. Additionally, these data are being leveraged to develop cell engineering strategies to bolster immunotherapy efficacy. This review presents an in-depth analysis of the biophysical interactions of the GBM TME and immune cell populations as well as the systems used to elucidate the underlying immunosuppressive mechanisms for improving current therapies.
Collapse
Affiliation(s)
- Landon Teer
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Joseph Chen
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
8
|
Lonie JM, Brosda S, Bonazzi VF, Aoude LG, Patel K, Brown I, Sharma S, Lampe G, Addala V, Koufariotis LT, Wood S, Waddell N, Dolcetti R, Barbour AP. The oesophageal adenocarcinoma tumour immune microenvironment dictates outcomes with different modalities of neoadjuvant therapy - results from the AGITG DOCTOR trial and the cancer evolution biobank. Front Immunol 2023; 14:1220129. [PMID: 37965317 PMCID: PMC10642165 DOI: 10.3389/fimmu.2023.1220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
A plateau in treatment effect can be seen for the current 'one-size-fits-all' approach to oesophageal adenocarcinoma (OAC) management using neoadjuvant chemoradiotherapy (nCRT) or chemotherapy (nCT). In OAC, the tumour microenvironment (TME) is largely immunosuppressed, however a subgroup of patients with an immune-inflamed TME exist and show improved outcomes. We aimed to understand the overall immune-based mechanisms underlying treatment responses and patient outcomes in OAC, and in relation to neoadjuvant therapy modality. This study included 107 patients; 68 patients were enrolled in the Australian Gastro-Intestinal Trials Group sponsored DOCTOR Trial, and 38 patients were included from the Cancer Evolution Biobank. Matched pre-treatment and post-treatment tumour biopsies were used to perform multi-modality analysis of the OAC TME including NanoString mRNA expression analysis, multiplex and single colour immunohistochemistry (IHC), and peripheral blood mononuclear cell analysis of tumour-antigen specific T cell responses. Patients with the best clinicopathological outcomes and survival had an immune-inflamed TME enriched with anti-tumour immune cells and pathways. Those with the worst survival showed a myeloid T regulatory cell enriched TME, with decreased CD8+ cell infiltration and increased pro-tumour immune cells. Multiplex IHC analysis identified that high intra-tumoural infiltration of CD8+ cells, and low infiltration with CD163+ cells was associated with improved survival. High tumour core CD8+ T cell infiltration, and a low tumour margin infiltration of CD163+ cells was also associated with improved survival. nCRT showed improved survival compared with nCT for patients with low CD8+, or high CD163+ cell infiltration. Poly-functional T cell responses were seen with tumour-antigen specific T cells. Overall, our study supports the development of personalised therapeutic approaches based on the immune microenvironment in OAC. Patients with an immune-inflamed TME show favourable outcomes regardless of treatment modality. However, in those with an immunosuppressed TME with CD163+ cell infiltration, treatment with nCRT can improve outcomes. Our findings support previous studies into the TME of OAC and with more research, immune based biomarker selection of treatment modality may lead in improved outcomes in this deadly disease.
Collapse
Affiliation(s)
- James M. Lonie
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra Brosda
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa F. Bonazzi
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren G. Aoude
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kalpana Patel
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Brown
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- Department of Pathology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Sowmya Sharma
- Medlab Pathology, Sydney, NSW, Australia
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Guy Lampe
- Department of Anatomical Pathology, Central Laboratory Pathology Queensland, Brisbane, QLD, Australia
| | - Venkateswar Addala
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Scott Wood
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicola Waddell
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Translational and Clinical Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew P. Barbour
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Pužar Dominkuš P, Hudler P. Mutational Signatures in Gastric Cancer and Their Clinical Implications. Cancers (Basel) 2023; 15:3788. [PMID: 37568604 PMCID: PMC10416847 DOI: 10.3390/cancers15153788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer is characterised by high inter- and intratumour heterogeneity. The majority of patients are older than 65 years and the global burden of this disease is increasing due to the aging of the population. The disease is usually diagnosed at advanced stages, which is a consequence of nonspecific symptoms. Few improvements have been made at the level of noninvasive molecular diagnosis of sporadic gastric cancer, and therefore the mortality rate remains high. A new field of mutational signatures has emerged in the past decade with advances in the genome sequencing technology. These distinct mutational patterns in the genome, caused by exogenous and endogenous mutational processes, can be associated with tumour aetiology and disease progression, and could provide novel perception on the treatment possibilities. This review assesses the mutational signatures found in gastric cancer and summarises their potential for use in clinical setting as diagnostic or prognostic biomarkers. Associated treatment options and biomarkers already implemented in clinical use are discussed, together with those that are still being explored or are in clinical studies.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Xu T, Wang W, Bao R, Xia X, Zhang J, Huang M, Chen X, Wang R, Zhang H, Liu X, Li Q, Shu Y. Anti-PD-1 plus anti-angiogenesis combined with chemotherapy in patients with HER2-negative advanced or metastatic gastric cancer: a multi-institutional retrospective study. J Gastrointest Oncol 2023; 14:175-186. [PMID: 36915465 PMCID: PMC10007938 DOI: 10.21037/jgo-23-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Background Immunotherapy plus chemotherapy have been confirmed to be effective in treating advanced or metastatic gastric cancer (GC). Anti- programmed death-1 (PD-1) plus antiangiogenic agents have shown promising activity and tolerant toxicity in subsequent therapy of late-stage gastric cancer. The aim of this study was to assess the efficacy and safety of anti-PD-1 plus anti-angiogenic agents and chemotherapy in advanced or metastatic GC and to explore the potential biomarkers associated with response. Methods We retrospectively reviewed thirty human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic GC patients who received PD-1 plus anti-angiogenic drugs and chemotherapy. Conversion therapy was defined when the patients could undergo resection post combination therapy. Clinical data were retrieved from medical records. We conducted exploratory biomarker analysis of baseline gene mutations and tumor mutation burden (TMB) using the next-generation sequencing (NGS), PD-L1 by immunohistochemistry (IHC), and the tumor immune microenvironment (TIME) by multiplex immunofluorescence. Results A total of 30 patients received anti-PD-1plus anti-angiogenic drugs and chemotherapy during the study period. The objective response rate (ORR) was 76.7% [95% confidence interval (CI): 57.7-90.1%] and disease control rate (DCR) was 86.7% (95% CI: 69.3-96.2%). A total of 11 patients (36.7%) achieved conversion therapy and underwent surgery. The R0 resection rate was 90.9%. Of the 11 patients, 9 (81.8%) responded to the treatment, 1 with a pathological complete response (pCR) and 8 with a major pathological response (MPR). No adverse events of grade 3 or higher occurred. Neither PD-L1 expression nor TMB was significantly correlated with treatment response. Analysis of TIME revealed that the fraction of CD8+ T cell in the invasive margin was higher in responders than non-responders before treatment. TAM2 in the tumor center and CD8+ T cell in the invasive margin was significantly increased after combination therapy, which suggested that combination therapy promoted infiltration of CD8+ T cells, thereby exerting an antitumor effect. Conclusions Immunotherapy plus anti-angiogenic drugs and chemotherapy is a promising treatment strategy for advanced or metastatic GC patients. Tumor infiltration CD8+ T cells may serve as potential predictive biomarker.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjie Wang
- Gusu School, Nanjing Medical University, Suzhou, China.,Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Ruikang Bao
- Gusu School, Nanjing Medical University, Suzhou, China.,Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Xihua Xia
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Junling Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xiaofeng Chen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xisheng Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
11
|
Wang J, Qiu Q, Lian N, Wang H, Zheng Q, Yang Y, Ma Y, Zhao Y, Li P, Lin J, Lu J, Chen Q, Cao L, Lin M, Huang C, Xie J. An immunosuppressive scoring system to predict recurrence and assist in decision regarding postoperative adjuvant treatment in gastric cancer. Am J Cancer Res 2022; 12:2050-2067. [PMID: 35693074 PMCID: PMC9185630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023] Open
Abstract
Inhibition of the immune microenvironment is the main cause of tumor recurrence after surgery in patients with gastric cancer (GC). In this study, immunohistochemistry and multiple immunofluorescence staining were used to evaluate immunosuppressive indicators and immune biomarkers in 825 patients with gastric cancer from three centers. We constructed an immunosuppressive recurrence score (IRS) using LASSO Cox regression based on the expression of six immunosuppressive indicators and found that the IRS and IRS-based nomogram were significantly accurate and reliable in predicting recurrence. Moreover, an elevated IRS was associated with locoregional recurrence and postoperative adjuvant chemotherapy failure. Furthermore, an increase in IRS indicated inhibition of the antitumor effect of CD8+ tumor-infiltrating lymphocytes in the invasive margin. Thus, we propose that the IRS can predict the recurrence outcome of patients with GC by distinguishing the immunosuppressive status, which is helpful in the selection of individualized adjuvant treatment plans.
Collapse
Affiliation(s)
- Jiabin Wang
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Qingzhu Qiu
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Ningzi Lian
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Huagen Wang
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Qiaoling Zheng
- Department of Pathology, Fujian Medical University Union HospitalFuzhou, Fujian, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union HospitalFuzhou, Fujian, China
| | - Yubin Ma
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qinghai UniversityXining, Qinghai, China
| | - Yajun Zhao
- Department of Gastrointestinal Surgery, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei, Anhui, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union HospitalFuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of EducationFuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical UniversityFuzhou, Fujian, China
| |
Collapse
|
12
|
Dislich B, Mertz KD, Gloor B, Langer R. Interspatial Distribution of Tumor and Immune Cells in Correlation with PD-L1 in Molecular Subtypes of Gastric Cancers. Cancers (Basel) 2022; 14:cancers14071736. [PMID: 35406506 PMCID: PMC8996833 DOI: 10.3390/cancers14071736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: EBV-positive and mismatch repair-deficient (MMRd) gastric cancers (GCs) show higher levels of tumor-infiltrating lymphocytes (TILs) and PD-L1 expression and thus a more profound response to immunotherapy. However, the majority of GCs are EBV-negative (EBV−) and MMR proficient (MMRp). We analyzed PD-L1 expression and TILs in EBV-MMRpGCs in comparison to EBV-positive (EBV+) and MMRdGCs to identify an immunogenic phenotype susceptible to immunotherapy. (2) Methods: A next-generation tissue microarray of 409 primary resected GCs was analyzed by Epstein-Barr encoding region (EBER) in situ hybridization for MSH1, PMS2, MSH2, MSH6, PD-L1, and CD8 immunohistochemistry. PD-L1 positivity was defined as a combined positive score (CPS) of ≥1. CD8+ TILs and their proximity to cancer cells were digitally analyzed on the HALO™ image analysis platform. (3) Results: Eleven cases were EBV+, 49 cases MMRd, and 349 cases EBV-MMRpGCs. The highest rate of PD-L1 positivity was seen in EBV+GCs, followed by MMRdGCs and EBV-MMRpGCs (81.8%, 73.5%, and 27.8%, respectively). EBV+ and MMRdGCs also demonstrated increased numbers and proximity of CD8+ TILs to tumor cells compared to EBV-MMRpGCs (p < 0.001 each). PD-L1 status positively correlated with the total numbers of CD8+ TILs and their proximity to tumor cells in all subtypes, including EBV-MMRpGCs (p < 0.001 each). A total of 28.4% of EBV-MMRpGCs showed high CD8+ TILs independent of PD-L1. (4) Conclusions: PD-L1 and CD8 immunohistochemistry, supplemented by digital image analysis, may identify EBV-MMRpGCs with high immunoreactivity indices, indicating susceptibility to immunotherapy.
Collapse
Affiliation(s)
- Bastian Dislich
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Correspondence:
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410 Liestal, Switzerland;
| | - Beat Gloor
- Department of Visceral Surgery and Medicine, Inselspital Bern, University of Bern, 3010 Bern, Switzerland;
| | - Rupert Langer
- Institute of Clinical Pathology and Molecular Pathology, Kepler University Hospital, Johannes Kepler University, 4021 Linz, Austria;
| |
Collapse
|
13
|
Senchukova MA, Tomchuk O, Shurygina EI. Helicobacter pylori in gastric cancer: Features of infection and their correlations with long-term results of treatment. World J Gastroenterol 2021; 27:6290-6305. [PMID: 34712033 PMCID: PMC8515796 DOI: 10.3748/wjg.v27.i37.6290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a spiral-shaped bacterium responsible for the development of chronic gastritis, gastric ulcer, gastric cancer (GC), and MALT-lymphoma of the stomach. H. pylori can be present in the gastric mucosa (GM) in both spiral and coccoid forms. However, it is not known whether the severity of GM contamination by various vegetative forms of H. pylori is associated with clinical and morphological characteristics and long-term results of GC treatment. AIM To establish the features of H. pylori infection in patients with GC and their correlations with clinical and morphological characteristics of diseases and long-term results of treatment. METHODS Of 109 patients with GC were included in a prospective cohort study. H. pylori in the GM and tumor was determined by rapid urease test and by immunohistochemically using the antibody to H. pylori. The results obtained were compared with the clinical and morphological characteristics and prognosis of GC. Statistical analysis was performed using the Statistica 10.0 software. RESULTS H. pylori was detected in the adjacent to the tumor GM in 84.5% of cases, of which a high degree of contamination was noted in 50.4% of the samples. Coccoid forms of H. pylori were detected in 93.4% of infected patients, and only coccoid-in 68.9%. It was found that a high degree of GM contamination by the coccoid forms of H. pylori was observed significantly more often in diffuse type of GC (P = 0.024), in poorly differentiated GC (P = 0.011), in stage T3-4 (P = 0.04) and in N1 (P = 0.011). In cases of moderate and marked concentrations of H. pylori in GM, a decrease in 10-year relapse free and overall survival from 55.6% to 26.3% was observed (P = 0.02 and P = 0.07, respectively). The relationship between the severity of the GM contamination by the spiral-shaped forms of H. pylori and the clinical and morphological characteristics and prognosis of GC was not revealed. CONCLUSION The data obtained indicates that H. pylori may be associated not only with induction but also with the progression of GC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Olesya Tomchuk
- Department of Histology, Cytology, Embryology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Elena I Shurygina
- Department of Pathology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
14
|
Siva S, Bressel M, Mai T, Le H, Vinod S, de Silva H, Macdonald S, Skala M, Hardcastle N, Rezo A, Pryor D, Gill S, Higgs B, Wagenfuehr K, Montgomery R, Awad R, Chesson B, Eade T, Wong W, Sasso G, De Abreu Lourenco R, Kron T, Ball D, Neeson P. Single-Fraction vs Multifraction Stereotactic Ablative Body Radiotherapy for Pulmonary Oligometastases (SAFRON II): The Trans Tasman Radiation Oncology Group 13.01 Phase 2 Randomized Clinical Trial. JAMA Oncol 2021; 7:1476-1485. [PMID: 34455431 DOI: 10.1001/jamaoncol.2021.2939] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Evidence is lacking from randomized clinical trials to guide the optimal approach for stereotactic ablative body radiotherapy (SABR) in patients with pulmonary oligometastases. Objective To assess whether single-fraction or multifraction SABR is more effective for the treatment of patients with pulmonary oligometastases. Design, Setting, and Participants This multicenter, unblinded, phase 2 randomized clinical trial of 90 patients across 13 centers in Australia and New Zealand enrolled patients with 1 to 3 lung oligometastases less than or equal to 5 cm from any nonhematologic malignant tumors located away from the central airways, Eastern Cooperative Oncology Group performance status 0 or 1, and all primary and extrathoracic disease controlled with local therapy. Enrollment was from January 1, 2015, to December 31, 2018, with a minimum patient follow-up of 2 years. Interventions Single fraction of 28 Gy (single-fraction arm) or 4 fractions of 12 Gy (multifraction arm) to each oligometastasis. Main Outcomes and Measures The main outcome was grade 3 or higher treatment-related adverse events (AEs) occurring within 1 year of SABR. Secondary outcomes were freedom from local failure, overall survival, disease-free survival, and patient-reported outcomes (MD Anderson Symptom Inventory-Lung Cancer and EuroQol 5-dimension visual analog scale). Results Ninety participants were randomized, of whom 87 were treated for 133 pulmonary oligometastases. The mean (SD) age was 66.6 [11.6] years; 58 (64%) were male. Median follow-up was 36.5 months (interquartile range, 24.8-43.9 months). The numbers of grade 3 or higher AEs related to treatment at 1 year were 2 (5%; 80% CI, 1%-13%) in the single-fraction arm and 1 (3%; 80% CI, 0%-10%) in the multifraction arm, with no significant difference observed between arms. One grade 5 AE occurred in the multifraction arm. No significant differences were found between the multifraction arm and single-fraction arm for freedom from local failure (hazard ratio [HR], 0.5; 95% CI, 0.2-1.3; P = .13), overall survival (HR, 1.5; 95% CI, 0.6-3.7; P = .44), or disease-free survival (HR, 1.0; 95% CI, 0.6-1.6; P > .99). There were no significant differences observed in patient-reported outcomes. Conclusions and Relevance In this randomized clinical trial, neither arm demonstrated evidence of superior safety, efficacy, or symptom burden; however, single-fraction SABR is more efficient to deliver. Therefore, single-fraction SABR, as assessed by the most acceptable outcome profile from all end points, could be chosen to escalate to future studies. Trial Registration ClinicalTrials.gov Identifier: NCT01965223.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Mathias Bressel
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Tao Mai
- Radiation Oncology Centre, Princess Alexandra Hospital, Queensland, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia
| | - Shalini Vinod
- Cancer Therapy Centre, Liverpool Hospital, New South Wales, Australia
| | - Harini de Silva
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Angela Rezo
- Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - David Pryor
- Radiation Oncology Centre, Princess Alexandra Hospital, Queensland, Australia
| | - Suki Gill
- Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Braden Higgs
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia
| | - Kassandra Wagenfuehr
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, New South Wales, Australia
| | - Rebecca Montgomery
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, New South Wales, Australia
| | - Raef Awad
- Royal Hobart Hospital, Tasmania, Australia
| | - Brent Chesson
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Wenchang Wong
- Department of Radiation Oncology, Prince of Wales Hospital, New South Wales, Australia
| | - Giuseppe Sasso
- Radiation Oncology Department, Auckland City Hospital, New Zealand
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, New South Wales, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Radiation Oncology Centre, Princess Alexandra Hospital, Queensland, Australia
| | - David Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | |
Collapse
|
15
|
Fong CYK, Chau I. Harnessing biomarkers of response to improve therapy selection in esophago-gastric adenocarcinoma. Pharmacogenomics 2021; 22:703-726. [PMID: 34120461 PMCID: PMC8265282 DOI: 10.2217/pgs-2020-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Advanced esophago-gastric (OG) adenocarcinomas have a high mortality rate and new therapeutic options are urgently required. Despite recent advances in understanding the molecular characteristics of OG cancers, tumor heterogeneity poses a challenge in developing new therapeutics capable of improving patient outcomes. Consequently, chemotherapy remains the mainstay of systemic treatment, with the HER2 being the only predictive biomarker routinely targeted in clinical practice. Recent data indicate that immunotherapy will be incorporated into first-line chemotherapy, but further research is required to refine patient selection. This review will summarize the clinical strategies being evaluated to utilize our knowledge of predictive biomarkers with reference to novel therapeutics, and discuss the barriers to implementing precision oncology in OG adenocarcinoma.
Collapse
Affiliation(s)
- Caroline YK Fong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Ian Chau
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
16
|
Parra ER. Methods to Determine and Analyze the Cellular Spatial Distribution Extracted From Multiplex Immunofluorescence Data to Understand the Tumor Microenvironment. Front Mol Biosci 2021; 8:668340. [PMID: 34179080 PMCID: PMC8226163 DOI: 10.3389/fmolb.2021.668340] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Image analysis using multiplex immunofluorescence (mIF) to detect different proteins in a single tissue section has revolutionized immunohistochemical methods in recent years. With mIF, individual cell phenotypes, as well as different cell subpopulations and even rare cell populations, can be identified with extraordinary fidelity according to the expression of antibodies in an mIF panel. This technology therefore has an important role in translational oncology studies and probably will be incorporated in the clinic. The expression of different biomarkers of interest can be examined at the tissue or individual cell level using mIF, providing information about cell phenotypes, distribution of cells, and cell biological processes in tumor samples. At present, the main challenge in spatial analysis is choosing the most appropriate method for extracting meaningful information about cell distribution from mIF images for analysis. Thus, knowing how the spatial interaction between cells in the tumor encodes clinical information is important. Exploratory analysis of the location of the cell phenotypes using point patterns of distribution is used to calculate metrics summarizing the distances at which cells are processed and the interpretation of those distances. Various methods can be used to analyze cellular distribution in an mIF image, and several mathematical functions can be applied to identify the most elemental relationships between the spatial analysis of cells in the image and established patterns of cellular distribution in tumor samples. The aim of this review is to describe the characteristics of mIF image analysis at different levels, including spatial distribution of cell populations and cellular distribution patterns, that can increase understanding of the tumor microenvironment.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
18
|
Ning ZK, Hu CG, Huang C, Liu J, Zhou TC, Zong Z. Molecular Subtypes and CD4 + Memory T Cell-Based Signature Associated With Clinical Outcomes in Gastric Cancer. Front Oncol 2021; 10:626912. [PMID: 33816214 PMCID: PMC8011500 DOI: 10.3389/fonc.2020.626912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CD4+ memory T cells are an important component of the tumor microenvironment (TME) and affect tumor occurrence and progression. Nevertheless, there has been no systematic analysis of the effect of CD4+ memory T cells in gastric cancer (GC). METHODS Three datasets obtained from microarray and the corresponding clinical data of GC patients were retrieved and downloaded from the Gene Expression Omnibus (GEO) database. We uploaded the normalize gene expression data with standard annotation to the CIBERSORT web portal for evaluating the proportion of immune cells in the GC samples. The WGCNA was performed to identify the modules the CD4+ memory T cell related module (CD4+ MTRM) which was most significantly associated with CD4+ memory T cell. Univariate Cox analysis was used to screen prognostic CD4+ memory T cell-related genes (CD4+ MTRGs) in CD4+ MTRM. LASSO analysis and multivariate Cox analysis were then performed to construct a prognostic gene signature whose effect was evaluated by Kaplan-Meier curves and receiver operating characteristic (ROC), Harrell's concordance index (C-index), and decision curve analyses (DCA). A prognostic nomogram was finally established based on the CD4+ MTRGs. RESULT We observed that a high abundance of CD4+ memory T cells was associated with better survival in GC patients. CD4+ MTRM was used to stratify GC patients into three clusters by unsupervised clustering analysis and ten CD4+ MTRGs were identified. Overall survival, five immune checkpoint genes and 17 types of immunocytes were observed to be significantly different among the three clusters. A ten-CD4+ MTRG signature was constructed to predict GC patient prognosis. The ten-CD4+ MTRG signature could divide GC patients into high- and low-risk groups with distinct OS rates. Multivariate Cox analysis suggested that the ten-CD4+ MTRG signature was an independent risk factor in GC. A nomogram incorporating this signature and clinical variables was established, and the C-index was 0.73 (95% CI: 0.697-0.763). Calibration curves and DCA presented high credibility for the OS nomogram. CONCLUSION We identified three molecule subtypes, ten CD4+ MTRGs, and generated a prognostic nomogram that reliably predicts OS in GC. These findings have implications for precise prognosis prediction and individualized targeted therapy.
Collapse
Affiliation(s)
- Zhi-Kun Ning
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ce-Gui Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiang Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tai-Cheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Li W, Li M, Wang H, Peng Y, Dong S, Lu Y, Wang F, Xu F, Liu L, Zhao Q. Infiltrating Immune Cells in Gastric Cancer: A Novel Predicting Model for Prognosis. J Cancer 2021; 12:965-975. [PMID: 33442396 PMCID: PMC7797666 DOI: 10.7150/jca.51079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Objective: Immune cells infiltrating has been proved to be associated with prognosis in gastric cancer (GC) by studies. This study aims to explore the prognosis value of infiltrating immune cells in gastric cancer. Methods: In our study, the CIBERSORT algorithm was used to calculate the fraction of 22 tumor-infiltrating immune cells (TIIC) in 100 normal and 300 tumor samples from the GEO cohort and 30 normal and 344 tumor samples from the TCGA cohort. Univariate and multivariate Cox regression were used to construct an immune risk score model. Multivariate cox regression was also used to validate whether our risk score model could predict prognosis in GC independently. Furthermore, the model was validated in different patient subgroups to test its independence. P<0.05 was considered statistically significant. Results: The results showed that the fraction of 3 immune cells increased in tumor tissues compared with normal tissues in both the GEO and TCGA cohort. Univariate cox regression analysis showed four cells significantly correlated with survival rate in GC (P<0.05). The immune risk score model was constructed based on the four cells through multivariate cox regression and further validated. The KM survival curve suggested that patients with high risk had poor prognosis than patients with low risk (P<0.05). ROC curve indicated the model was reliable (AUC= 0.67 in the GEO cohort, AUC = 0.65 in the TCGA cohort). Furthermore, multivariate Cox regression showed the model was an independent factor for overall survival predicting in GC (hazard ratio (HR) = 2.35, 95% confidence interval (CI) = 1.63~3.40 in the GEO cohort, HR = 2.87, 95% CI = 1.94~4.25 in the TCGA cohort). Finally, we validated the model in patient subgroups by the KM survival curve. Conclusion: In summary, tumor-infiltrating immune cells play an essential role in GC progression and affect the outcome of GC patients. The immune risk score can predict overall survival for GC independently, and high immune risk score is associated with poor prognosis.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shouquan Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
20
|
Wang M, Wang S, Desai J, Trapani JA, Neeson PJ. Therapeutic strategies to remodel immunologically cold tumors. Clin Transl Immunology 2020; 9:e1226. [PMID: 35136604 PMCID: PMC8809427 DOI: 10.1002/cti2.1226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce a durable response in a wide range of tumor types, but only a minority of patients outside these 'responsive' tumor types respond, with some totally resistant. The primary predictor of intrinsic immune resistance to ICIs is the complete or near-complete absence of lymphocytes from the tumor, so-called immunologically cold tumors. Here, we propose two broad approaches to convert 'cold' tumors into 'hot' tumors. The first is to induce immunogenic tumor cell death, through the use of oncolytic viruses or bacteria, conventional cancer therapies (e.g. chemotherapy or radiation therapy) or small molecule drugs. The second approach is to target the tumor microenvironment, and covers diverse options such as depleting immune suppressive cells; inhibiting transforming growth factor-beta; remodelling the tumor vasculature or hypoxic environment; strengthening the infiltration and activation of antigen-presenting cells and/or effector T cells in the tumor microenvironment with immune modulators; and enhancing immunogenicity through personalised cancer vaccines. Strategies that successfully modify cold tumors to overcome their resistance to ICIs represent mechanistically driven approaches that will ultimately result in rational combination therapies to extend the clinical benefits of immunotherapy to a broader cancer cohort.
Collapse
Affiliation(s)
- Minyu Wang
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Sen Wang
- South Australian Genomics CentreSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Medical Genomics PlatformHudson Institute of Medical ResearchClaytonVICAustralia
| | - Jayesh Desai
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Division of Medical OncologyPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Joseph A Trapani
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Paul J Neeson
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| |
Collapse
|
21
|
Zhang T, Warden AR, Li Y, Ding X. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med 2020; 10:e206. [PMID: 33135337 PMCID: PMC7556381 DOI: 10.1002/ctm2.206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) technology permits the identification and quantification of inherently diverse cellular systems, and the simultaneous measurement of functional attributes at the single-cell resolution. By virtue of its multiplex ability with limited need for compensation, CyTOF has led a critical role in immunological research fields. Here, we present an overview of CyTOF, including the introduction of CyTOF principle and advantages that make it a standalone tool in deciphering immune mysteries. We then discuss the functional assays, introduce the bioinformatics to interpret the data yield via CyTOF, and depict the emerging clinical and research applications of CyTOF technology in sketching immune landscape in a wide variety of diseases.
Collapse
Affiliation(s)
- Ting Zhang
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Antony R. Warden
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiyang Li
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xianting Ding
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|