1
|
Gao N, Tang H, Li T, Yang Y, Zhao H, Wang L, Guo Y, Qiao B, Pan L. Single-cell transcriptome analysis reveals cellular heterogeneity in the aortas of Takayasu arteritis. Arthritis Res Ther 2025; 27:55. [PMID: 40065428 PMCID: PMC11892157 DOI: 10.1186/s13075-025-03523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES Takayasu arteritis (TAK) is an inflammatory vasculitis that affects the aorta and its primary branches. The pathogenesis of TAK remains elusive, yet identifying key cell types in the aorta of TAK patients is crucial for uncovering cellular heterogeneity and discovering potential therapeutic targets. METHODS This study utilized single-cell transcriptome analysis on aortic specimens from three TAK patients, with control data sourced from a publicly available database (GSE155468). Additionally, bulk RNA sequencing was performed on peripheral CD4 + and CD8 + T cells from eight TAK patients and eight matched healthy volunteers. All participants were recruited at Anzhen Hospital, Capital Medical University, China, between January 2020 and December 2023. RESULTS Single-cell transcriptome analysis identified 11 predominant cell types in aortic tissues, with notable differences in proportions between TAK patients and controls. T cells, B cells, macrophages, smooth muscle cells (SMCs), and fibroblasts exhibited subtype-specific gene expression signatures, with notable changes in interactions between T cells, B cells, and monocyte-macrophages, highlighting their active involvement in the pathogenesis of TAK. Bulk RNA-Seq analysis of peripheral blood T cells from TAK patients showed an upregulation of complement system genes, underscoring the significance of the complement signaling pathway in TAK's immunopathogenesis. CONCLUSION The findings underscore the active involvement of various immune and structural cells in the aortic tissues of TAK patients and reveal the presence of the complement signaling pathway in peripheral blood T cells. These insights are instrumental for identifying novel therapeutic targets and developing robust disease monitoring methods for TAK.
Collapse
Affiliation(s)
- Na Gao
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - He Tang
- Department of Clinical Laboratory, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Taotao Li
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Yi Yang
- Department of Cardiovascular Surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Honglei Zhao
- Department of Cardiovascular Surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Longfei Wang
- Department of Cardiovascular Surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Yanqiu Guo
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Bokang Qiao
- Beijing Institute of Heart, Lung and Vessel Disease, Capital Medical University Affiliated Anzhen Hospital, Beijing, China.
| | - Lili Pan
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China.
| |
Collapse
|
2
|
Wei H, Xu W, Jiang H, Jin S, Liu X. Prognostic factors associated with acute retinal necrosis treated non-surgically. Eye (Lond) 2024; 38:3382-3388. [PMID: 39261652 PMCID: PMC11584890 DOI: 10.1038/s41433-024-03319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVES To analyse the prognostic factors for visual acuity in acute retinal necrosis (ARN) patients treated non-surgically. METHODS The clinical data of ARN patients who visited our hospital from January 2010 to January 2023 were retrospectively analysed. RESULTS Twenty-four patients (29 eyes) were included. Aqueous humour samples were collected from 20 out of 29 eyes, and PCR confirmed that 85% (17/20) of the eyes had VZV infection, 10% (2/20) had CMV infection, and 5% (1/20) had HSV infection. All patients were treated with intravenous antiviral agents. Intravitreal ganciclovir and oral corticosteroids were given according to the patients' wishes. A comparison of visual acuity at the time of first identification of inactive ARN with that at the first visit revealed that 16 (55.2%) eyes improved and 13 (44.8%) did not improve. Logistic regression analysis revealed that risk factors for failure to improve vision after treatment included retinal detachment (odds ratio [OR],33.75; 95% CI, 3.245-351.067; P = 0.003), necrotising retinitis involving the posterior pole (odds ratio [OR],8.167; 95% CI, 1.297-51.403, P = 0.025), and arteritis involving the large retinal arteries (odds ratio [OR],9.167; 95% CI, 1.493-56.297; P = 0.017). The VZV viral load in the aqueous humour at initial presentation was significantly associated with visual prognosis (r = 0.688, P = 0.013), retinal detachment (τ = 0.597, P = 0.021) and the extent of retinal necrosis (τ = 0.57, P = 0.027). The neutrophil to lymphocyte ratio (NLR) of VZV-infected patients at first presentation was significantly correlated with the prognosis of visual acuity (r = 0.616, P = 0.033) and retinal detachment (τ = 0.728, P = 0.004). CONCLUSIONS High NLR and viral DNA copy number in the aqueous humour at the initial presentation, as well as subsequent retinal detachment, necrotising retinitis involving the posterior pole, and arteritis involving the large retinal arteries were risk factors for poor visual prognosis in VZV-infected ARN patients.
Collapse
Affiliation(s)
- Haihui Wei
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, PR China
| | - WenJing Xu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, PR China
| | - Hai Jiang
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, PR China
| | - Siyan Jin
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, PR China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, PR China.
| |
Collapse
|
3
|
Ishigaki S, Yoshimoto K, Akiyama M, Matsumoto K, Suzuki K, Yamanoi K, Iwakura Y, Takeuchi T, Kaneko Y. Expansion of granulocyte-macrophage colony-stimulating factor producing CD4+ T cells in an animal model with enhanced interleukin-1 signal. Immunol Med 2024:1-9. [PMID: 39600116 DOI: 10.1080/25785826.2024.2430913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/14/2024] [Indexed: 11/29/2024] Open
Abstract
Interleukin-1, a pro-inflammatory cytokine, plays a crucial role in inflammatory disease pathogenesis. Interleukin-1 receptor antagonist knockout (IL-1Ra KO) mice spontaneously develop aortitis, arthritis and dermatitis, and are employed as a model for human inflammatory diseases. Previous studies have shown that transferring total T cells from IL-1Ra KO mice into nude mice induces aortitis and arthritis; however, the roles of specific T cell subsets in these inflammatory responses remain unclear. In this study, we aimed to investigate the T cell subsets in IL-1Ra KO mice. We found that the proportion of PD-1+CD44+CD62L-CD4+ T cells in the spleen and lymph nodes of IL-1Ra KO mice was significantly higher than that of wild type mice. RNA sequencing revealed elevated expression of basic helix-loop-helix family member e40 and granulocyte macrophage colony stimulating factor (GM-CSF) in splenic CD44+CD62L-CD4+ T cells from IL-1Ra KO mice. In addition, GM-CSF production from splenic CD4+ T cells of IL-1Ra KO mice was significantly higher than that of wild type mice when stimulated with PMA and ionomycin in vitro. Notably, immunohistochemical staining showed infiltration of GM-CSF+CD4+ T cells at inflammatory sites in IL-1Ra KO mice. Our results suggest that a subset of GM-CSF+CD4 + T cells emerges under IL-1 signal-enhanced inflammatory conditions.
Collapse
Affiliation(s)
- Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamanoi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Fang C, Du L, Gao S, Chen Y, Chen Z, Wu Z, Li L, Li J, Zeng X, Li M, Li Y, Tian X. Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu's arteritis. Ann Rheum Dis 2024; 83:1522-1535. [PMID: 38816066 PMCID: PMC11503059 DOI: 10.1136/ard-2024-225630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Arterial wall inflammation and remodelling are the characteristic features of Takayasu's arteritis (TAK). It has been proposed that vascular smooth muscle cells (VSMCs) are the main targeted cells of inflammatory damage and participate in arterial remodelling in TAK. Whether VSMCs are actively involved in arterial wall inflammation has not been elucidated. Studies have shown that cellular senescence in tissue is closely related to local inflammation persistence. We aimed to investigate whether VSMCs senescence contributes to vascular inflammation and the prosenescent factors in TAK. METHODS VSMCs senescence and senescence-associated secretory phenotype were detected by histological examination, bulk RNA-Seq and single-cell RNA-seq conducted on vascular surgery samples of TAK patients. The key prosenescent factors and the downstream signalling pathway were investigated in a series of in vitro and ex vivo experiments. RESULTS Histological findings, primary cell culture and transcriptomic analyses demonstrated that VSMCs of TAK patients had the features of premature senescence and contributed substantially to vascular inflammation by upregulating the expression of senescence-associated inflammatory cytokines. IL-6 was found to be the critical cytokine that drove VSMCs senescence and senescence-associated mitochondrial dysfunction in TAK. Mechanistically, IL-6-induced non-canonical mitochondrial localisation of phosphorylated STAT3 (Tyr705) prevented mitofusin 2 (MFN2) from proteasomal degradation, and subsequently promoted senescence-associated mitochondrial dysfunction and VSMCs senescence. Mitochondrial STAT3 or MFN2 inhibition ameliorated VSMCs senescence in ex vivo cultured arteries of TAK patients. CONCLUSIONS VSMCs present features of cellular senescence and are actively involved in vascular inflammation in TAK. Vascular IL-6-mitochondrial STAT3-MFN2 signalling is an important driver of VSMCs senescence.
Collapse
Affiliation(s)
- Chenglong Fang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lihong Du
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shang Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Matsumoto K, Suzuki K, Yasuoka H, Hirahashi J, Yoshida H, Magi M, Noguchi-Sasaki M, Kaneko Y, Takeuchi T. Longitudinal monitoring of circulating immune cell phenotypes in anti-neutrophil cytoplasmic antibody-associated vasculitis. Autoimmun Rev 2023; 22:103271. [PMID: 36627064 DOI: 10.1016/j.autrev.2023.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) is a necrotizing multiorgan autoimmune disease that affects small- to medium-sized blood vessels. Despite the improvements in treatments, half of the patients with AAV still experience disease relapses. In this review, we focus on peripheral leukocyte properties and phenotypes in patients with AAV. In particular, we explore longitudinal changes in circulating immune cell phenotypes during the active phase of the disease and treatment. The numbers and phenotypes of leukocytes in peripheral blood were differs between AAV and healthy controls, AAV in active versus inactive phase, AAV in treatment responders versus non-responders, and AAV with and without severe infection. Therefore, biomarkers detected in peripheral blood immune cells may be useful for longitudinal monitoring of disease activity in AAV.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Division of Rheumatology, Department of Internal Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Junichi Hirahashi
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | | | - Mayu Magi
- Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan
| | | | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Matsumoto K, Suzuki K, Yoshida H, Magi M, Matsumoto Y, Noguchi-Sasaki M, Yoshimoto K, Takeuchi T, Kaneko Y. Distinct gene signatures of monocytes and B cells in patients with giant cell arteritis: a longitudinal transcriptome analysis. Arthritis Res Ther 2023; 25:1. [PMID: 36597161 PMCID: PMC9809009 DOI: 10.1186/s13075-022-02982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Giant cell arteritis (GCA) is a primary large-vessel vasculitis (LVV) of unknown origin. Its management is a challenge due to the late onset of disease symptoms and frequent relapse; therefore, clarifying the pathophysiology of GCA is essential to improving treatment. This study aimed to identify the transition of molecular signatures in immune cells relevant to GCA pathogenesis by analyzing longitudinal transcriptome data in patients. METHODS We analyzed the whole blood transcriptome of treatment-naive patients with GCA, patients with Takayasu arteritis (TAK), age-matched, old healthy controls (HCs), and young HCs. Characteristic genes for GCA were identified, and the longitudinal transition of those genes was analyzed using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). RESULTS Repeated measures analysis of variance revealed 739 differentially expressed genes among all patients and HCs. Of the 739 genes, 15 were characteristically upregulated and 36 were downregulated in patients with GCA compared to those with TAK and HCs. Pathway enrichment analysis showed that downregulated genes in GCA were associated with B cell activation. CIBERSORT analysis revealed that upregulation of "M0-macrophages" and downregulation of B cells were characteristic of GCA. Upregulation of "M0-macrophages" reflects the activation of monocytes in GCA toward M0-like phenotypes, which persisted under 6 weeks of treatment. Combined treatment with prednisolone and an interleukin-6 receptor antagonist normalized molecular profiles more efficiently than prednisolone monotherapy. CONCLUSIONS Gene signatures of monocyte activation and B cell inactivation were characteristic of GCA and associated with treatment response.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Tokyo, Shinjuku-ku, Japan.
| | - Katsuya Suzuki
- grid.26091.3c0000 0004 1936 9959Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Tokyo, Shinjuku-ku Japan
| | - Hiroto Yoshida
- grid.515733.60000 0004 1756 470XChugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa Japan
| | - Mayu Magi
- grid.515733.60000 0004 1756 470XChugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa Japan
| | - Yoshihiro Matsumoto
- grid.515733.60000 0004 1756 470XChugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa Japan
| | - Mariko Noguchi-Sasaki
- grid.515733.60000 0004 1756 470XChugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa Japan
| | - Keiko Yoshimoto
- grid.26091.3c0000 0004 1936 9959Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Tokyo, Shinjuku-ku Japan
| | - Tsutomu Takeuchi
- grid.26091.3c0000 0004 1936 9959Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Tokyo, Shinjuku-ku Japan
| | - Yuko Kaneko
- grid.26091.3c0000 0004 1936 9959Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Tokyo, Shinjuku-ku Japan
| |
Collapse
|
7
|
Matsumoto K, Suzuki K, Takeshita M, Takeuchi T, Kaneko Y. Changes in the molecular profiles of large-vessel vasculitis treated with biological disease-modifying anti-rheumatic drugs and Janus kinase inhibitors. Front Immunol 2023; 14:1197342. [PMID: 37197652 PMCID: PMC10183585 DOI: 10.3389/fimmu.2023.1197342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Giant cell arteritis and Takayasu arteritis are two types of primary large-vessel vasculitis (LVV). Although glucocorticoids (GC) are the standard treatment for LVV, the disease relapse rates are high. Recent clinical trials on biological disease-modifying anti-rheumatic drugs (bDMARDs) and Janus kinase (JAK) inhibitors have demonstrated their efficacy in reducing LVV relapse rates and GC dosages. However, the control of residual inflammation and degenerative alterations in the vessel wall remains an outstanding requirement in the clinical management of LVV. The analysis of immune cell phenotypes in patients with LVV may predict their response to treatment with bDMARDs and JAK inhibitors and guide their optimal use. In this mini-review, we focused on molecular markers, including the immune cell proportions and gene expression, in patients with LVV and in mouse models of LVV treated with bDMARDs and JAK inhibitors.
Collapse
|
8
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
9
|
Yuqing M, Shang G, Qing G, Jiyang W, Ruihao L, Zuoguan C, Yongpeng D, Zhiyuan W, Yongjun L. Transcriptome profiling of abdominal aortic tissues reveals alterations in mRNAs of Takayasu arteritis. Front Genet 2022; 13:1036233. [PMID: 36468014 PMCID: PMC9709398 DOI: 10.3389/fgene.2022.1036233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/24/2022] [Indexed: 10/09/2023] Open
Abstract
Takayasu arteritis (TA) is a chronic granulomatous vasculitis involving in the main branches of aorta. Previous studies mainly used peripheral blood and some vascular tissues but seldom studies have sequenced vascular tissues. Here in this study, we aimed to explore the alterations of mRNA in TA by performing bulk RNA sequencing. A total of 14 abdominal aortic tissues including 8 from renal transplantation and 6 from patient with TA undergoing bypass surgeries. Bulk RNA sequencing were performed and after the quality control, a total of 1897 transcripts were observed to be significantly differently (p < 0.05 and Log2FC > 1) expressed between the TA and control group, among which 1,361 transcripts were in TA group and 536 in the Control group. Reactome Pathway Enrichment Comparison analysis revealed interleukin-10 signaling and signaling by interleukins were highly expressed in TA group. Besides, extracellular matrix organization was also observed in this group. WGCNA and PPI obtained 26 core genes which were highly correlated with the clinical phenotype. We then also perform deconvolution of the bulk RNA-seq data by using the scRNA-seq dataset and noticed the high proportion of smooth muscle cells in our dataset. Additionally, immunohistochemical staining confirmed our bioinformatic analysis that TA aortic tissues express high levels of IL-1R1 and IL-1R2. Briefly, this study revealed critical roles of interleukins in TA pathogenesis, and SMCs may also participate in the reconstruction in vessel wall at late stage of TA.
Collapse
Affiliation(s)
- Miao Yuqing
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gao Shang
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gao Qing
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijng, China
| | - Wang Jiyang
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Ruihao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Zuoguan
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Diao Yongpeng
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wu Zhiyuan
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Yongjun
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Matsumoto K, Suzuki K, Yoshida H, Magi M, Kaneko Y, Takeuchi T. Longitudinal monitoring of circulating immune cell phenotypes in large vessel vasculitis. Autoimmun Rev 2022; 21:103160. [PMID: 35926769 DOI: 10.1016/j.autrev.2022.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are two types of primary large vessel vasculitis (LVV). LVV is an intractable, rare disease with a high relapse rate. Disease progression in asymptomatic patients is an important issue in the clinical management of LVV. Useful biomarkers associated with clinical phenotypes, disease activity, and prognosis may be present in peripheral blood. In this review, we focused on peripheral leukocyte counts, surface markers, functions, and gene expression in LVV patients. In particular, we explored longitudinal changes in circulating immune cell phenotypes during the active phase of the disease and during treatment. The numbers and phenotypes of leukocytes in the peripheral blood were different between LVV and healthy controls, GCA and TAK, LVV in active versus treatment phases, and LVV in treatment responders versus non-responders. Therefore, biomarkers obtained from peripheral blood immune cells may be useful for longitudinal monitoring of disease activity in LVV.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Mayu Magi
- Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat Rev Rheumatol 2022; 18:158-170. [PMID: 35039664 DOI: 10.1038/s41584-021-00738-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Vascular pathologies underpin and intertwine autoimmune rheumatic diseases and cardiovascular conditions, and atherosclerosis is increasingly recognized as the leading cause of morbidity in conditions such as systemic lupus erythematosus (SLE), rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis. Neutrophils, important cells in the innate immune system, exert their functional effects in tissues via a variety of mechanisms, including the generation of neutrophil extracellular traps and the production of reactive oxygen species. Neutrophils have been implicated in the pathogenesis of several rheumatic diseases, and can also intimately interact with the vascular system, either through modulating endothelial barriers at the blood-vessel interface, or through associations with platelets. Emerging data suggest that neutrophils also have an important role maintaining homeostasis in individual organs and can protect the vascular system. Furthermore, studies using high-dimensional omics technologies have advanced our understanding of neutrophil diversity, and immature neutrophils are receiving new attention in rheumatic diseases including SLE and systemic vasculitis. Developments in genomic, imaging and organoid technologies are beginning to enable more in-depth investigations into the pathophysiology of vascular inflammation in rheumatic diseases, making now a good time to re-examine the full scope of roles of neutrophils in these processes.
Collapse
|
12
|
Qing G, Zhiyuan W, Jinge Y, Yuqing M, Zuoguan C, Yongpeng D, Jinfeng Y, Junnan J, Yijia G, Weimin L, Yongjun L. Single-Cell RNA Sequencing Revealed CD14 + Monocytes Increased in Patients With Takayasu's Arteritis Requiring Surgical Management. Front Cell Dev Biol 2021; 9:761300. [PMID: 34671607 PMCID: PMC8521054 DOI: 10.3389/fcell.2021.761300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Objectives: Takayasu Arteritis (TA) is a highly specific vascular inflammation and poses threat to patients’ health. Although some patients have accepted medical treatment, their culprit lesions require surgical management (TARSM). This study aimed at dissecting the transcriptomes of peripheral blood mononuclear cells (PBMCs) in these patients and to explore potential clinical markers for TA development and progression. Methods: Peripheral blood were collected from four TA patients requiring surgical management and four age-sex matched healthy donors. Single cell RNA sequencing (scRNA-seq) was adopted to explore the transcriptomic diversity and function of their PBMCs. ELISA, qPCR, and FACS were conducted to validate the results of the analysis. Results: A total of 29918 qualified cells were included for downstream analysis. Nine major cell types were confirmed, including CD14+ monocytes, CD8+ T cells, NK cells, CD4+ T cells, B cells, CD16+ monocytes, megakaryocytes, dendritic cells and plasmacytoid dendritic cells. CD14+ monocytes (50.0 vs. 39.3%, p < 0.05) increased in TA patients, as validated by FACS results. TXNIP, AREG, THBS1, and CD163 increased in TA patients. ILs like IL-6, IL-6STP1, IL-6ST, IL-15, and IL-15RA increased in TA group. Conclusion: Transcriptome heterogeneities of PBMCs in TA patients requiring surgical management were revealed in the present study. In the patients with TA, CD14+ monocytes and gene expressions involved in oxidative stress were increased, indicating a new treatment and research direction in this field.
Collapse
Affiliation(s)
- Gao Qing
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China.,National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wu Zhiyuan
- Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Yu Jinge
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Miao Yuqing
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Chen Zuoguan
- Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Diao Yongpeng
- Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Yin Jinfeng
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jia Junnan
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guo Yijia
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Weimin
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Yongjun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| |
Collapse
|