1
|
Xiao D, Chen T, Yu X, Song Y, Liu Y, Yan W. The MYC/TXNIP axis mediates NCL-Suppressed CD8 +T cell immune response in lung adenocarcinoma. Mol Med 2025; 31:180. [PMID: 40346484 PMCID: PMC12063364 DOI: 10.1186/s10020-025-01224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma is a deadly malignancy with immune evasion playing a key role in tumor progression. Glucose metabolism is crucial for T cell function, and the nucleolar protein NCL may influence T cell glucose metabolism. This study aims to investigate NCL's role in T cell glucose metabolism and immune evasion by lung adenocarcinoma cells. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), we analyzed cell clustering, annotation, and prognosis. In vitro experiments involved manipulating NCL expression in CD8+ T cells to study immune function and glucose metabolism. In vivo studies using an orthotopic transplant mouse model monitored NCL's impact on CD8+ T cell glucose metabolism and anti-tumor immune function. RESULTS NCL was associated with T cell dysfunction and glucose metabolism. NCL silencing enhanced CD8+ T cell glucose metabolism, cytotoxicity, and infiltration, while NCL overexpression had the opposite effect. NCL overexpression relieved MYC-mediated transcriptional repression of TXNIP, reducing CD8+ T cell glucose metabolism. In vivo, NCL inhibited CD8+ T cell glucose metabolism through the MYC/TXNIP axis, hindering anti-tumor immune function. CONCLUSIONS NCL overexpression suppresses CD8+ T cell glucose metabolism and anti-tumor immune function, promoting lung adenocarcinoma progression via the MYC/TXNIP axis.
Collapse
Affiliation(s)
- Dan Xiao
- Department of Thoracic Oncology, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, 330029, Jiangxi, China
| | - Tanxiu Chen
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinlin Yu
- Department of Medical Laboratory, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, 330029, Nanchang, China
| | - Ying Song
- Department of Medical Laboratory, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, 330029, Nanchang, China
| | - Yigang Liu
- Department of Ultrasound Medicine, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, 330029, Jiangxi, China.
| | - Wei Yan
- Department of Thoracic Oncology, Jiangxi Cancer Hospital&Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, 330029, Jiangxi, China.
| |
Collapse
|
2
|
Luo W, Xu M, Wong N, Ng CSH. Alternative Splicing in Lung Adenocarcinoma: From Bench to Bedside. Cancers (Basel) 2025; 17:1329. [PMID: 40282505 PMCID: PMC12025742 DOI: 10.3390/cancers17081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor and the most prevalent pathological type of lung cancer. The alternative splicing (AS) of mRNA enables the generation of multiple protein products from a single gene. This is a tightly regulated process that significantly contributes to the proteome diversity in eukaryotes. Recent multi-omics studies have delineated the splicing profiles that underline LUAD tumorigenesis from initiation to metastasis. Such progress holds robust promise to facilitate the development of screening strategies and individualized therapies. Perturbed AS fosters the emergence of novel neoantigen resources and disturbances in the immune microenvironment, which allow new investigations into modulatory targets for LUAD immunotherapy. This review presents an update on the landscape of dysregulated splicing events in LUAD and the associated mechanisms and theranostic perspectives with unique insights into AS-based immunotherapy, such as Chimeric Antigen Receptor T cell therapy. These AS variants can be used in conjunction with current therapeutic modules in LUAD, allowing bench to bedside translation to combat this highly malignant cancer.
Collapse
Affiliation(s)
| | | | - Nathalie Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| | - Calvin Sze-Hang Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| |
Collapse
|
3
|
Zhang M, Zeng Y, Liu Q, Li F, Zhao J, Liu Z, Liu H, Feng H. The H5N1-NS1 protein affects the host cell cycle and apoptosis through interaction with the host lncRNA PIK3CD-AS2. Virus Genes 2025; 61:38-53. [PMID: 39424707 DOI: 10.1007/s11262-024-02118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Long noncoding RNAs (lncRNAs) are involved in the host antiviral response, but how host lncRNAs interact with viral proteins remains unclear. The NS1 protein of avian influenza viruses can affect the interferon-dependent expression of several host lncRNAs, but the exact mechanism is unknown. To further investigate the molecular mechanism and functions of NS1 proteins and host lncRNAs, we performed RNA-immunoprecipitation sequencing assays on A549 cells transfected with the H5N1-NS1 gene. We identified multiple sets of host lncRNAs that interact with NS1. The results of the RNA pulldown assay indicated that PIK3CD-AS2 can directly interact with NS1 in vitro. Immunofluorescence confocal microscopy showed that these proteins were colocalized in the nucleus. Further studies revealed that PIK3CD-AS2 can also inhibit the transcription of NS1, which in turn affects the translation of the NS1 protein. PIK3CD-AS2 overexpression regulates NS1 protein-induced cell cycle arrest and initiates apoptosis. We hope this work will help elucidate the molecular mechanisms associated with NS1 proteins in the study of viral infections to promote the development of potential treatments for patients infected with avian influenza A viruses.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110179, Liaoning, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China.
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China.
- School of Pharmacy Sciences, Liaoning University, Shenyang, 110036, Liaoning, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China.
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China.
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China.
- School of Pharmacy Sciences, Liaoning University, Shenyang, 110036, Liaoning, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China.
| |
Collapse
|
4
|
Gola AM, Bucci-Muñoz M, Rigalli JP, Ceballos MP, Ruiz ML. Role of the RNA binding protein IGF2BP1 in cancer multidrug resistance. Biochem Pharmacol 2024; 230:116555. [PMID: 39332691 DOI: 10.1016/j.bcp.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.
Collapse
Affiliation(s)
- Aldana Magalí Gola
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Bucci-Muñoz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Paula Ceballos
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina.
| |
Collapse
|
5
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
6
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
7
|
Sun Y, Sun J, Ying K, Chen J, Chen T, Tao L, Bian W, Qiu L. EP300 regulates the SLC16A1-AS1-AS1/TCF3 axis to promote lung cancer malignancies through the Wnt signaling pathway. Heliyon 2024; 10:e27727. [PMID: 38515708 PMCID: PMC10955305 DOI: 10.1016/j.heliyon.2024.e27727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Objective To investigate the regulatory mechanism of EP300 in the interaction between SLC16A1-AS1 and TCF3 to activate the Wnt pathway, thereby promoting malignant progression in lung cancer. Methods In lung cancer cell lines, SLC16A1-AS1 was knocked down, and the impact of this knockdown on the malignant progression of lung cancer cells was assessed through clonogenic assays, Transwell assays, and apoptosis experiments. The regulatory relationship between EP300 and SLC16A1-AS1 was investigated through bioinformatic analysis and ChIP experiments. The expression of SLC16A1-AS1 and TCF3 in 56 paired lung cancer tissues was examined using RT-qPCR, and their correlation was analyzed. The interaction between TCF3 and SLC16A1-AS1 was explored through bioinformatic analysis and CoIP experiments. Activation of the Wnt/β-catenin pathway was assessed by detecting the accumulation of β-catenin in the nucleus through Western blotting. The role of EP300 in regulating the effect of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression was validated through in vitro and in vivo experiments. Results SLC16A1-AS1 is highly expressed in lung cancer and regulates its malignant progression. EP300 mediates histone modifications on the SLC16A1-AS1 promoter, thus controlling its expression. SLC16A1-AS1 exhibits specific interactions with TCF3, and the SLC16A1-AS1/TCF3 complex activates the Wnt/β-catenin pathway. EP300 plays a critical role in regulating the impact of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression. Conclusion EP300 regulates the SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling pathway, influencing the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Yunhao Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Kaijun Ying
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jinjin Chen
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Tingting Chen
- Department of Emergency, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Leilei Tao
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Weigang Bian
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Limin Qiu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| |
Collapse
|
8
|
Zhao L, He S, Liu Z, Song Z, Hou X, Gai L. Bioinformatics analysis of the prognostic role of alternative splicing data in lung adenocarcinoma. J Thorac Dis 2024; 16:1463-1472. [PMID: 38505068 PMCID: PMC10944774 DOI: 10.21037/jtd-24-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024]
Abstract
Background As a post-transcriptional regulatory mechanism, alternative splicing (AS) is engaged in a variety of pathophysiological processes, and it has been widely reported in connection with the occurrence, progression, metastasis, and drug resistance of cancer. However, the research on AS in lung adenocarcinoma (LUAD) is very limited. In addition, the prognostic effect of AS event (ASE) on LUAD and its related mechanism are not clear. This study aimed to explore the role and potential prognostic value of ASE in LUAD. Methods Relevant data and ASE datasets of the sample were acquired from The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases. We constructed a new prognostic criterion based on ASEs. Then, Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis were used to construct the model. Based on this model, the risk score of each ASE was calculated, and the reliability of this model was evaluated by Kaplan-Meier survival and receiver operating characteristic (ROC) curve analyses. Finally, these results were verified on different network platforms. Results We identified seven types of ASEs related to survival. The prognostic risk model for ASEs was established. The Kaplan-Meier curve showed that compared to the low-risk group, the overall survival (OS) rate of LUAD patients in the high-risk group was lower. ROC curve analysis showed that the prognostic risk model of LUAD patients was well predicted, and the area under the curve (AUC) also confirmed this. Conclusions This study screened the ASE related to the prognosis of LUAD patients, and provided a theoretical basis for further study of the correlation between ASE and the prognosis of LUAD patients. It has provided new ideas for developing new biomarkers and therapeutic targets for LUAD patients.
Collapse
Affiliation(s)
- Lingling Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Nantong University, The First People’s Hospital of Nantong, Nantong, China
| | - Shuting He
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
- Department of Oncology, Medical School of Nantong University, Nantong, China
| | - Ziwei Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
- Department of Oncology, Medical School of Nantong University, Nantong, China
| | - Zhibin Song
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
- Department of Oncology, Medical School of Nantong University, Nantong, China
| | - Xiaochun Hou
- Department of Oncology, The Second People’s Hospital of Nantong, Nantong, China
| | - Ling Gai
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Song Z, Cao X, Wang X, Li Y, Zhang W, Wang Y, Chen L. A disulfidptosis-related lncRNA signature for predicting prognosis and evaluating the tumor immune microenvironment of lung adenocarcinoma. Sci Rep 2024; 14:4621. [PMID: 38409243 PMCID: PMC10897395 DOI: 10.1038/s41598-024-55201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
As a novel form of regulated cell death (RCD), disulfidptosis offering a significant opportunity in better understanding of tumor pathogenesis and therapeutic strategies. Long non-coding RNAs (lncRNAs) regulate the biology functions of tumor cells by engaging with a range of targets. However, the prognostic value of disulfidptosis-related lncRNAs (DRlncRNAs) in lung adenocarcinoma (LUAD) remains unclear. Therefore, our study aimed at establishing a prognostic model for LUAD patients based on DRlncRNAs. RNA-seq data and clinical information were obtained from The Cancer Genome Atlas (TCGA) database. Subsequently, a prognostic model based on DRlncRNAs was constructed using LASSO and COX regression analysis. Patients were stratified into high- and low-risk groups based on their risk scores. Differences between the high-risk and low-risk groups were investigated in terms of overall survival (OS), functional enrichment, tumor immune microenvironment (TIME), somatic mutations, and drug sensitivity. Finally, the role of lncRNA GSEC in LUAD was validated through in vitro experiments. Using the prognostic model consists of 5 DRlncRNAs (AL365181.2, GSEC, AC093673.1, AC012615.1, AL606834.1), the low-risk group exhibited a markedly superior survival in comparison to the high-risk group. The significant differences were observed among patients from different risk groups in OS, immune cell infiltration, immune checkpoint expression, immunotherapy response, and mutation landscape. Experimental results from cellular studies demonstrate the knockdown of lncRNA GSEC leading to a significant reduction in the proliferation and migration abilities of LUAD cells. Our prognostic model, constructed using 5 DRlncRNAs, exhibited the capacity to independently predict the survival of LUAD patients, providing the potentially significant assistance in prognosis prediction, and treatment effects optimization. Moreover, our study established a foundation for further research on disulfidptosis in LUAD and proposed new perspectives for the treatment of LUAD.
Collapse
Affiliation(s)
- Zipei Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xincen Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaokun Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| | - Weiran Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Xu H, Xiong W, Liu X, Wang Y, Shi M, Shi Y, Shui J, Yu Y. Long noncoding RNA LINC00921 serves as a predictive biomarker for lung adenocarcinoma: An observational study. Medicine (Baltimore) 2024; 103:e37179. [PMID: 38363898 PMCID: PMC10869092 DOI: 10.1097/md.0000000000037179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is usually diagnosed at advanced stages. Hence, there is an urgent need to seek an effective biomarker to predict LUAD status. Long noncoding RNAs (lncRNAs) play key roles in the development of tumors. However, the relationship between LINC00921 and LUAD remains unclear. The gene expression data of LUAD were downloaded from the Cancer Genome Atlas database to investigate the expression level of LINC00921 in LUAD. Diagnostic ability analysis, survival analysis, tumor mutational burden analysis, and immune cell infiltration analysis of LINC00921 in LUAD patients were performed simultaneously. According to the median expression value of LINC00921, patients were divided into LINC00921 high- and low-expression groups. The function of LINC00921 in LUAD was identified through difference analysis and enrichment analysis. Moreover, drugs that may be relevant to LUAD treatment were screened. Finally, blood samples were collected for real-time polymerase chain reaction. LINC00921 was significantly lower in LUAD tumor tissues. Notably, patients with low expression of LINC00921 had a shorter median survival time. Decreased immune cell infiltration in the tumor microenvironment in the low LINC00921 expression group may contribute to poorer patient outcomes. Tumor mutational burden was significantly different in survival between the LINC00921 high- and low-expression groups. In addition, LINC00921 may exert an influence on cancer development through its regulation of target genes transcription. Glyceraldehyde-3-phosphate dehydrogenase-related drugs may be more likely to be therapeutically effective in LUAD. LINC00921 was able to be used as the potential diagnostic indicator for LUAD.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Weijie Xiong
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 610031, P.R. China
| | - Xianguo Liu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Maolin Shi
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuhui Shi
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Jia Shui
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yanxin Yu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Fu J, Yu L, Yan H, Tang S, Wang Z, Dai T, Chen H, Zhang S, Hu H, Liu T, Tang S, He R, Zhou H. LncRNAs in non-small cell lung cancer: novel diagnostic and prognostic biomarkers. Front Mol Biosci 2023; 10:1297198. [PMID: 38152110 PMCID: PMC10751344 DOI: 10.3389/fmolb.2023.1297198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related death worldwide, with a serious impact on human health and life. The identification of NSCLC at an early stage is a formidable task that frequently culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited protein-coding capacity, and its expression is out of balance in many cancers, especially NSCLC. A large number of studies have reported that lncRNA acts a vital role in regulating angiogenesis, invasion, metastasis, and the proliferation and apoptosis of tumor cells, affecting the occurrence and development of NSCLC. Abundant evidence demonstrates that lncRNAs may serve as potential biomarkers for NSCLC diagnosis and prognosis. In this review, we summarize the latest progress in characterizing the functional mechanism of lncRNAs involved in the development of NSCLC and further discuss the role of lncRNAs in NSCLC therapy and chemotherapy resistance. We also discuss the advantages, limitations, and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the management of NSCLC.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Dai
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
12
|
Zou C, Zan X, Jia Z, Zheng L, Gu Y, Liu F, Han Y, Xu C, Wu A, Zhi Q. Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin Transl Med 2023; 13:e1479. [PMID: 37983927 PMCID: PMC10659771 DOI: 10.1002/ctm2.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an omnipresent regulatory mechanism of gene expression that enables the generation of diverse splice isoforms from a single gene. Recently, AS events have gained considerable momentum in the pathogenesis of inflammatory bowel disease (IBD). METHODS Our review has summarized the complex process of RNA splicing, and firstly highlighted the potential involved molecules that target aberrant splicing events in IBD. The quantitative transcriptome analyses such as microarrays, next-generation sequencing (NGS) for AS events in IBD have been also discussed. RESULTS Available evidence suggests that some abnormal splicing RNAs can lead to multiple intestinal disorders during the onset of IBD as well as the progression to colitis-associated cancer (CAC), including gut microbiota perturbations, intestinal barrier dysfunctions, innate/adaptive immune dysregulations, pro-fibrosis activation and some other risk factors. Moreover, current data show that the advanced technologies, including microarrays and NGS, have been pioneeringly employed to screen the AS candidates and elucidate the potential regulatory mechanisms of IBD. Besides, other biotechnological progresses such as the applications of third-generation sequencing (TGS), single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST), will be desired with great expectations. CONCLUSIONS To our knowledge, the current review is the first one to evaluate the potential regulatory mechanisms of AS events in IBD. The expanding list of aberrantly spliced genes in IBD along with the developed technologies provide us new clues to how IBD develops, and how these important AS events can be explored for future treatment.
Collapse
Affiliation(s)
- Chentao Zou
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinquan Zan
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhenyu Jia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lu Zheng
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yijie Gu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fei Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ye Han
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chunfang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Airong Wu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiaoming Zhi
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
13
|
Zhu Z, Huo F, Zhang J, Shan H, Pei D. Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med 2023; 13:e1460. [PMID: 37850412 PMCID: PMC10583157 DOI: 10.1002/ctm2.1460] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background N6-methyladenosine (m6A), the most prevalent internal mRNA modification in eukaryotes, is added by m6A methyltransferases, removed by m6A demethylases and recognised by m6A-binding proteins. This modification significantly influences carious facets of RNA metabolism and plays a pivotal role in cellular and physiological processes. Main body Pre-mRNA alternative splicing, a process that generates multiple splice isoforms from multi-exon genes, contributes significantly to the protein diversity in mammals. Moreover, the presence of crosstalk between m6A modification and alternative splicing, with m6A modifications on pre-mRNAs exerting regulatory control, has been established. The m6A modification modulates alternative splicing patterns by recruiting specific RNA-binding proteins (RBPs) that regulate alternative splicing or by directly influencing the interaction between RBPs and their target RNAs. Conversely, alternative splicing can impact the deposition or recognition of m6A modification on mRNAs. The integration of m6A modifications has expanded the scope of therapeutic strategies for cancer treatment, while alternative splicing offers novel insights into the mechanistic role of m6A methylation in cancer initiation and progression. Conclusion This review aims to highlight the biological functions of alternative splicing of m6A modification machinery and its implications in tumourigenesis. Furthermore, we discuss the clinical relevance of understanding m6A-dependent alternative splicing in tumour therapies.
Collapse
Affiliation(s)
- Zhi‐Man Zhu
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Fu‐Chun Huo
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian Zhang
- Department of Respiratory MedicineSecond Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hong‐Jian Shan
- Department of OrthopedicsThe Affiliated Jiangning Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Dong‐Sheng Pei
- Department of PathologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
14
|
Tan J, Mao W, Long S, Zhang T. Metastasis-related long non-coding RNAs AL359220.1, SH3BP5-AS1 and ZF-AS1 are significant for prognostic assessment of lung adenocarcinoma. Aging (Albany NY) 2023; 15:7551-7564. [PMID: 37566767 PMCID: PMC10457074 DOI: 10.18632/aging.204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Metastasis of lung adenocarcinoma (LUAD) severely worsens prognosis. Genetic alteration in the tumor microenvironment (TME) is closely associated with metastasis and other malignant biological properties of LUAD. In this study, we establish a metastasis-related risk model to accurately predict LUAD prognosis. METHODS RNA-sequencing profiles and clinical data of LUAD patients including 503 tumor tissues and 54 adjacent normal tissues were collected in TCGA database. Additionally, the paired specimens from 156 LUAD patients were obtained in a single center. The metastatic relevance and clinical significance of metastasis-related long non-coding RNA (MRLNRs) was validated by series of in vitro experiments including western blotting, qPCR and transwell assays. RESULTS Six MRLNRs were significantly correlated to prognoses of LUAD patients, of which AL359220.1, SH3BP5-AS1 and ZF-AS1 were further used to establish a metastasis-related risk scoring model (MRRS) due to the close associations with overall survival of LUAD patients. According to the MRRS, patients with higher scores in the high-risk group obtained poorer prognoses and survival outcomes. ZFAS1 expressed highly in tumor tissues and showed the inverse results compared to SH3BP5-AS1 and AL359220.1. In addition, the high expression of ZFAS1 was prominently correlated to the more advanced T-stage and distant metastasis. The reduction of ZFAS1 induced by siRNAs dramatically diminished the migration and invasion abilities of LUAD cells. CONCLUSIONS In the present research, we elucidate the metastatic relevance and clinical significance of AL359220.1, SH3BP5-AS1 and ZF-AS1 in LUAD. Moreover, MRRS provide a promising assessing model for clinical decision making and prognosis of LUAD.
Collapse
Affiliation(s)
- Jianjun Tan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Three Gorges Hospital of Chongqing University, Chongqing 404000, China
| | - Weilin Mao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuzi Long
- Department of Oncology, Three Gorges Hospital of Chongqing University, Chongqing 404000, China
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|