1
|
Chen D, Lin D, Li H, Yang J, Liu L, Zhang H, Tang D, Wang K. The glycolytic characteristics of hepatocellular carcinoma and its interaction with the microenvironment: a comprehensive omics study. J Transl Med 2025; 23:424. [PMID: 40211257 PMCID: PMC11987379 DOI: 10.1186/s12967-025-06421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor characterized by a high recurrence rate and poor prognosis. This study aimed to identify glycolysis-related prognostic markers and immunological abnormalities in patients with HCC. METHODS We collected samples from cancerous and adjacent non-cancerous tissues for transcriptomic, metabolomic, and 16 S rRNA sequencing analyses. Glycolysis-related prognostic markers were identified by integrating public data from The Cancer Genome Atlas, GSE14520, and GSE76427 datasets. Additionally, single-cell sequencing data (GSE202642) were used to analyze the significantly infiltrated cellular subpopulations in HCC and investigate the expression of prognostic markers across different cell types. Spatial transcriptomics and mass cytometry (CyTOF) data were used to examine the expression differences in immune cells across tumor, peritumoral, and control tissues. Key prognostic markers were validated using reverse transcription-quantitative polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS Differentially expressed genes (DEGs) between HCC and control tissues were primarily clustered in cell cycle and metabolic pathways, particularly in the glycolysis pathway. Metabolomic analysis identified 175 differentially expressed metabolites that were mainly enriched in digestive and amino acid metabolism pathways. 16 S rRNA analysis revealed a significant increase in the abundance of Aenigmarchaeota and a decrease in the abundance of Proteobacteria in HCC tissues. The former was positively associated with glycolysis, whereas the latter showed a negative association. Through public data integration, 17 glycolysis-related DEGs were identified and 101 predictive models were constructed using machine learning. The StepCox[both] + random survival forest model using AGL, G6PD, GOT2, and KIF20A exhibited the best diagnostic performance among the three datasets. Single-cell RNA sequencing indicated significant infiltration of CD8 + Tex, CD8 + T, CD8 + Trm, and epithelial cells in HCC tissues. AGL, G6PD, GOT2, and KIF20A were highly expressed in CD8 + Tex cells, CD8 + Trm cells, macrophages, and monocytes, respectively. Spatial transcriptomics and CyTOF analyses showed greater infiltration of CD8 + Tex and CD8 + Trm cells in tumor tissues than in controls. Molecular assays further confirmed that G6PD and KIF20A expression levels were significantly higher, whereas AGL and GOT2 expression levels were lower, in HCC tissues than in control tissues. CONCLUSION Through integrative multi-omics analysis, we identified glycolysis-related prognostic markers with distinct expression profiles across immune cell subsets in HCC. Our findings identify potential biomarkers and therapeutic targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Dan Chen
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Dandan Lin
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Huling Li
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Jiandong Yang
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Lei Liu
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Hanyuan Zhang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Dandan Tang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
2
|
Xiao J, Liu T, Zeng F, Zhang J. New insights into T cell metabolism in liver cancer: from mechanism to therapy. Cell Death Discov 2025; 11:118. [PMID: 40122853 PMCID: PMC11930970 DOI: 10.1038/s41420-025-02397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Liver cancer is the sixth most common cancer worldwide and the third most common cause of cancer mortality. The development and progression of liver cancer and metastases is a multifaceted process involving numerous metabolic pathways. T cells have a protective role in the defense against cancer, and manipulating metabolic pathways in T cells can alter their antitumor activity. Furthermore, Liver cancer and T cell nutrition competition lead to T cell dysfunction through various molecular mechanisms. Some nanomaterials and drugs can improve T cell metabolism and promote the anti-liver cancer function of T cells. This review discusses the current literature regarding metabolic changes in liver cancer, the role of T cells in liver cancer, T cell metabolism in liver cancer, and targeted T cell metabolism therapy for liver cancer. The promise and challenges of studying target T cell metabolism for treating liver cancer are also addressed. Targeting T cell metabolism is a promising approach for treating liver cancer.
Collapse
Affiliation(s)
- Jie Xiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| | - Ting Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichua, China.
| | - Jinhua Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China.
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
| |
Collapse
|
3
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
4
|
Wu D, Li M, Wang M, Yan Z, Meng Y. PCAF acetylates AIB1 to form a transcriptional coactivator complex to promote glycolysis in endometrial cancer. Front Oncol 2024; 14:1442965. [PMID: 39301551 PMCID: PMC11410763 DOI: 10.3389/fonc.2024.1442965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Despite rapid advances in molecular biology, personalized molecular therapy remains a clinical challenge for endometrial cancer due to its complex and heterogeneous tumor microenvironment.Based on clinical findings, AIB1 is a marker molecule for poor prognosis in endometrial cancer and may serve as a potential therapeutic target. Moreover, it is well known that aerobic glycolysis plays an important role in tumour energy metabolism. It has been previously reported in various hormone-related tumour studies that AIB1 affects glycolysis and promotes tumour development. However, the link between AIB1 and aerobic glycolysis in estrogen-dependent endometrial cancer remains unclear. Methods We used two endometrial cancer cell lines to validate the high expression of target genes and the effect on the proliferative and invasive capacity of the tumours and verified the pattern of interactions and epigenetic modifications by CHIP and CO-IP techniques. Finally, the conclusions were validated on homozygous mice. Results In this study, we investigated the transcriptional co-activation functions of AIB1, including its acetylation by PCAF, binding to the c-myc transcription factor, and recruitment of glycolysis-related gene promoters. Discussion Our findings provide new clues that perturbation of normal homeostatic levels of AIB1 is linked with endometrial cancer. These findings suggest that targeting AIB1-mediated regulation of aerobic glycolysis may offer a novel therapeutic approach for endometrial cancer with high AIB1 expression, opening new avenues for personalized diagnostics and treatment strategies in this disease.
Collapse
Affiliation(s)
- Di Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Mingxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingyang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhifeng Yan
- Department of Obstetrics and Gynecology, The First Affiliated Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuanguang Meng
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The First Affiliated Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Cui Z, Fu Y, Zhou M, Feng H, Zhang L, Ma S, Chen C. Pan-cancer investigation of RFX family and associated genes identifies RFX8 as a therapeutic target in leukemia. Heliyon 2024; 10:e35368. [PMID: 39170430 PMCID: PMC11336603 DOI: 10.1016/j.heliyon.2024.e35368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Several transcription factors and co-factors are encoded by the RFX (Regulatory Factor X) family (RFX1-8) and associated genes (RFXAP and RFXANK). Increasing evidence suggests that the RFX family and associated genes are involved in the development and progression of cancer. However, no prior research has focused on a multi-omic analysis of these genes to evaluate their role in tumor progression. Methods Using combined TCGA and GTEx pan-cancer data, we investigated the expression patterns and survival profiles of these ten genes. We then focused on RFX8 to analyze its clinicopathological and therapeutic features. Finally, we conducted experimental validation of RFX8 function in acute myeloid leukemia (AML). Results RFX5 and RFXANK showed higher expression levels, while RFX6 showed lower expression levels in most types of cancer, with RFX8 being the most upregulated in LAML. RFX2 and RFXAP demonstrated prognostic significance in eight types of cancer, and RFX8 showed significance in six types of cancer. The expression of these ten genes exhibited specific characteristics in immune subtypes, tumor microenvironment, and stemness. The expression of RFX8 was correlated with various tumor stages, microsatellite instability (MSI), tumor mutation burden (TMB), immune cell infiltration, and immune-checkpoint expression. Additionally, RFX8 was found to regulate tumorigenesis and sensitivity to chelerythrine in AML. Conclusions Our work delineated the landscape of the RFX family and associated genes in the pan-cancer context and the specific role of RFX8 in AML. These findings might offer cues for further investigations of these genes in cancer biology.
Collapse
Affiliation(s)
- Zelong Cui
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Ruan Y, Qiao J, Wang J, Liu Z. NREP, transcriptionally upregulated by HIF-1α, aggravates breast cancer cell growth and metastasis by promoting glycolysis. Cell Death Discov 2024; 10:210. [PMID: 38697993 PMCID: PMC11066005 DOI: 10.1038/s41420-024-01951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Breast cancer (BC) poses a great threat to women's health. Neuronal regeneration related protein (NREP) is a multifunctional protein that is involved in embryonic development, regeneration, and human disease. However, the biological function of NREP in tumors is rarely reported and its role in BC remains unknown. Bioinformatics analysis showed that NREP is highly expressed and closely correlated with poor survival in BC patients. Under hypoxic conditions, NREP was upregulated in BC cells, and this promotion was reversed by hypoxia-inducible factor HIF-1α suppression. Luciferase reporter system and chromatin immunoprecipitation assays confirmed that HIF-1α directly binds to the promoter of NREP to increase the transcriptional activity of NREP. NREP suppression inhibited cell proliferation, arrested the cell cycle at the G1/S phase, and promoted apoptosis and caspase-3 activity in BC cells. Suppression of NREP decreased the tube formation ability of HUVECs. In addition, NREP downregulation showed an inhibition effect on cell migration, invasion, and EMT of BC cells. In NREP overexpressed cells, all these changes were reversed. In vivo, animal experiments also confirmed that NREP promotes BC tumor growth and metastasis. In addition, NREP promoted cellular glycolysis and enhanced the levels of glucose consumption, ATP, lactate production, and glucose transporters expression in NREP-overexpressed BC cells. In summary, our results demonstrated that NREP could be transcriptional activated by HIF-1α, which may aggravate BC tumor growth and metastasis by promoting cellular glycolysis. This result suggested that NREP may play an essential part in BC progression.
Collapse
Affiliation(s)
- Yuxia Ruan
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jianghua Qiao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jiabin Wang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
8
|
Tang Q, Hu G, Sang Y, Chen Y, Wei G, Zhu M, Chen M, Li S, Liu R, Peng Z. Therapeutic targeting of PLK1 in TERT promoter-mutant hepatocellular carcinoma. Clin Transl Med 2024; 14:e1703. [PMID: 38769666 PMCID: PMC11106514 DOI: 10.1002/ctm2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guanghui Hu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ye Sang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yulu Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guangyan Wei
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meiyan Zhu
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengke Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shiyong Li
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rengyun Liu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenwei Peng
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Dong Y, Zhang J, Xie S, Di S, Fan B, Gong T. JAM2 is a prognostic biomarker and inhibits proliferation, metastasis and epithelial-mesenchymal transition in lung adenocarcinoma. J Gene Med 2024; 26:e3679. [PMID: 38404047 DOI: 10.1002/jgm.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Junctional adhesion molecule 2 (JAM2) plays a pivotal role in various biological processes, including proliferation, metastasis and angiogenesis, contributing to tumor progression. While previous studies have highlighted the polarizing functions of JAM2 in different cancer types, its specific role in lung adenocarcinoma (LUAD) remains unclear. METHODS In this study, we harnessed multiple public databases to analyze the expression and prognostic significance of JAM2 in LUAD. Using the Linkedomics database, Matescape database and R package, we explored the associated genes, the potential biological functions and the impact of JAM2 on the tumor microenvironment. Our findings from public databases were further validated using real-time quantitative PCR, western blot and immunohistochemistry. Additionally, in vitro experiments were conducted to assess the influence of JAM2 on LUAD cell proliferation, invasion, migration, apoptosis and epithelial-mesenchymal transition. Furthermore, we established a xenograft model to investigate the in vivo effects of JAM2 on tumorigenesis. RESULTS Our results revealed a significant downregulation of JAM2 in LUAD, and patients with low JAM2 expression exhibited unfavorable overall survival outcomes. Functional enrichment analysis indicated that JAM2 may be associated with processes such as cell adhesion, extracellular matrix, cell junctions and regulation of proliferation. Notably, increased JAM2 expression correlated with higher tumor microenvironment scores and reduced immune cell abundance. Furthermore, overexpression of JAM2 induced apoptosis, suppressed tumor proliferation and exhibited potential inhibitory effects on tumor invasion and migration through the modulation of epithelial-mesenchymal transition. Additionally, in vivo experiments confirmed that JAM2 overexpression led to a reduction in tumor growth. CONCLUSION Overall, our study highlights the clinical significance of low JAM2 expression as a predictor of poor prognosis in LUAD patients. Moreover, JAM2 was found to exert inhibitory effects on various aspects of tumor progression. Consequently, JAM2 emerges as a promising prognostic biomarker and a potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Yanxin Dong
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Jiale Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shun Xie
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shouyin Di
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Boshi Fan
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Taiqian Gong
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| |
Collapse
|
10
|
Becht R, Kiełbowski K, Wasilewicz MP. New Opportunities in the Systemic Treatment of Hepatocellular Carcinoma-Today and Tomorrow. Int J Mol Sci 2024; 25:1456. [PMID: 38338736 PMCID: PMC10855889 DOI: 10.3390/ijms25031456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Liver cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease represent major risk factors of HCC. Multiple different treatment options are available, depending on the Barcelona Clinic Liver Cancer (BCLC) algorithm. Systemic treatment is reserved for certain patients in stages B and C, who will not benefit from regional treatment methods. In the last fifteen years, the arsenal of available therapeutics has largely expanded, which improved treatment outcomes. Nevertheless, not all patients respond to these agents and novel combinations and drugs are needed. In this review, we aim to summarize the pathway of trials investigating the safety and efficacy of targeted therapeutics and immunotherapies since the introduction of sorafenib. Furthermore, we discuss the current evidence regarding resistance mechanisms and potential novel targets in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Michał P. Wasilewicz
- Liver Unit, Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
11
|
Qiu Z, Wang C, Huang P, Yuan Y, Shi Y, Lin Z, Huang Z, Zuo D, Qiu J, He W, Shen J, Niu Y, Yuan Y, Li B. RFX6 facilitates aerobic glycolysis-mediated growth and metastasis of hepatocellular carcinoma through targeting PGAM1. Clin Transl Med 2023; 13:e1511. [PMID: 38093528 PMCID: PMC10719540 DOI: 10.1002/ctm2.1511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) cells undergo reprogramming of glucose metabolism to support uncontrolled proliferation, of which the intrinsic mechanism still merits further investigation. Although regulatory factor X6 (RFX6) is aberrantly expressed in different cancers, its precise role in cancer development remains ambiguous. METHODS Microarrays of HCC tissues were employed to investigate the expression of RFX6 in tumour and adjacent non-neoplastic tissues. Functional assays were employed to explore the role of RFX6 in HCC development. Chromatin immunoprecipitation, untargeted metabolome profiling and sequencing were performed to identify potential downstream genes and pathways regulated by RFX6. Metabolic assays were employed to investigate the effect of RFX6 on glycolysis in HCC cells. Bioinformatics databases were used to validate the above findings. RESULTS HCC tissues exhibited elevated expression of RFX6. High RFX6 expression represented as an independent hazard factor correlated to poor prognosis in patients with HCC. RFX6 deficiency inhibited HCC development in vitro and in vivo, while its overexpression exerted opposite functions. Mechanistically, RFX6 bound to the promoter area of phosphoglycerate mutase 1 (PGAM1) and upregulated its expression. The increased PGAM1 protein levels enhanced glycolysis and further promoted the development of HCC. CONCLUSIONS RFX6 acted as a novel driver for HCC development by promoting aerobic glycolysis, disclosing the potential of the RFX6-PGAM1 axis for therapeutic targeting.
Collapse
Affiliation(s)
- Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Chenwei Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Pinzhu Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease and Department of Colon and Rectum SurgeryThe Sixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Jingxian Shen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of RadiologySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| |
Collapse
|