1
|
Zhu X, Zhang Z, Zhang J, Xiao Y, Wang H, Wang M, Jiang M, Xu Y. Single-cell and Bulk Transcriptomic Analyses Reveal a Stemness and Circadian Rhythm Disturbance-related Signature Predicting Clinical Outcome and Immunotherapy Response in Hepatocellular Carcinoma. Curr Gene Ther 2025; 25:178-193. [PMID: 38847249 DOI: 10.2174/0115665232298240240529131358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 11/30/2024]
Abstract
AIMS Investigating the impact of stemness-related circadian rhythm disruption (SCRD) on hepatocellular carcinoma (HCC) prognosis and its potential as a predictor for immunotherapy response. BACKGROUND Circadian disruption has been linked to tumor progression through its effect on the stemness of cancer cells. OBJECTIVE Develop a novel signature for SCRD to accurately predict clinical outcomes and immune therapy response in patients with HCC. METHODS The stemness degree of patients with HCC was assessed based on the stemness index (mRNAsi). The co-expression circadian genes significantly correlated with mRNAsi were identified and defined as stemness- and circadian-related genes (SCRGs). The SCRD scores of samples and cells were calculated based on the SCRGs. Differentially expressed genes with a prognostic value between distinct SCRD groups were identified in bulk and single-cell datasets to develop an SCRD signature. RESULTS A higher SCRD score indicates a worse patient survival rate. Analysis of the tumor microenvironment revealed a significant correlation between SCRD and infiltrating immune cells. Heterogeneous expression patterns, functional states, genomic variants, and cell-cell interactions between two SCRD populations were revealed by transcriptomic, genomic, and interaction analyses. The robust SCRD signature for predicting immunotherapy response and prognosis in patients with HCC was developed and validated in multiple independent cohorts. CONCLUSIONS In summary, distinct tumor immune microenvironment patterns were confirmed under SCRD in bulk and single-cell transcriptomic, and SCRD signature associated with clinical outcomes and immunotherapy response was developed and validated in HCC.
Collapse
Affiliation(s)
- Xiaojing Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zixin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaxing Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanqi Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Minghui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Wei X, Zhao Y, Yan W, Dai Q, Wu H, Miao Y, Huang L, Liu Q, Zhang X, Wang H, Liu Y, Zhang L. The Efficacy and Safety of Apatinib and Anlotinib in Advanced Non-Small Cell Lung Cancer. Onco Targets Ther 2024; 17:629-642. [PMID: 39131903 PMCID: PMC11316477 DOI: 10.2147/ott.s468932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Background Anlotinib and apatinib, both vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs), are clinically established in the treatment of advanced non-small cell lung cancer (NSCLC) in China, with anlotinib emerging as a standard treatment strategy. This study was conducted to evaluate the efficacy and safety of apatinib and anlotinib, and to compare their differences in treating patients with advanced NSCLC. Patients and Methods We retrospectively analyzed the data of patients with advanced NSCLC treated with apatinib or anlotinib at a hospital in Eastern China from January 2017 to December 2021. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety profile. Results A total of 145 patients were included in this study. Median PFS (mPFS) was 3.53 months for the apatinib group and 5.3 months for the anlotinib group (HR = 0.59, 95% CI: 0.41-0.84; P = 0.004), and median OS (mOS) was 7.6 months versus 15.6 months (HR = 0.68, 95% CI: 0.46-1.00; P = 0.048), which all showed significant differences after adjusting for confounders (P < 0.05). Subgroup analysis revealed that the presence or absence of bone metastases significantly influenced PFS in both treatment groups. The ORR was 3.03% in the anlotinib group versus 10.13% in the apatinib group (P = 0.12), the DCR was 72.73% versus 51.90% (P = 0.21). No unanticipated adverse events (AEs) were observed. The incidence of grade 3-4 AEs was significantly higher in the apatinib group (31.65% vs 13.64%, P < 0.05). Conclusion Anlotinib demonstrated greater efficacy and safety compared to apatinib in the treatment of advanced NSCLC, particularly in patients with bone metastases and EGFR(-).
Collapse
Affiliation(s)
- Xiao Wei
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Yun Zhao
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Wenyue Yan
- Department of Oncology, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Qigang Dai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Hui Wu
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Yang Miao
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Lei Huang
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Qing Liu
- Department of Pharmacy, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Hongxia Wang
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Yanan Liu
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| | - Linlin Zhang
- Department of Pharmacy, The First People’s Hospital of Yancheng, Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu, 224000, People’s Republic of China
| |
Collapse
|
3
|
Gu Z, Huang P, Zhao J, Luo C, Liao L, Liu A, Huang L. Bilateral diffuse metastases in advanced lung adenocarcinoma harboring EGFR mutations was associated with a favorable prognosis to EGFR-TKIs. Int J Cancer 2024; 154:1979-1986. [PMID: 38353428 DOI: 10.1002/ijc.34878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024]
Abstract
Bilateral diffuse metastatic lung adenocarcinoma (BLDM-LUAD) is a special imaging pattern of lung adenocarcinoma (LUAD). We retrospectively assessed survival outcomes and co-mutation characteristics of BLDM-LUAD patients harboring epidermal growth factor receptor (EGFR) mutations who were treated with EGFR-yrosine kinase inhibitors (TKIs). From May 2016 to May 2021, among 458 patients who submitted samples for next generation sequencing (NGS) detection in 1125 patients with non-small-cell lung cancer (NSCLC), and 44 patients were diagnosed as BLDM-LUAD. In order to analyze the survival outcomes of BLDM-LUAD patients harboring EGFR mutations who were treated with EGFR-TKIs, the factors age, gender, smoking history, hydrothorax, site of EGFR mutations and EGFR-TKIs treatment were adjusted using propensity score-matching (PSM). The Kaplan-Meier survival curves and log-rank test were used to analyze progression-free survival (PFS) and overall survival (OS). The co-mutation characteristics of BLDM-LUAD patients harboring EGFR mutations were analyzed by NGS panels. 64 patients with advanced lung adenocarcinoma harboring EGFR mutations and first-line treatment of EGFR-TKIs were successfully matched. BLDM-LUAD (n = 32) have significantly longer median PFS than control group (n = 32) (mPFS: 14 vs 6.2 months; p = .002) and insignificantly longer median OS than control group (mOS: 45 vs 25 months; p = .052). The patients with BLDM-LUAD have the higher frequency of EGFR mutation than control group (84.1% vs 62.0%) before PSM. The co-mutation genes kirsten rat sarcoma viral oncogene homolog (KRAS) (9.4%), ataxia telangiectasia-mutated (ATM) (7.4%) and mesenchymal-epithelial transition (MET) (3.1%) only appeared in the control group after PSM. The BLDM-LUAD harboring EGFR mutations was associated with a favorable prognosis to EGFR-TKI.
Collapse
Affiliation(s)
- Zhenbang Gu
- Department of Oncology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- Medical School of Nanchang University, Nanchang, China
| | - Peng Huang
- Department of Oncology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jiali Zhao
- Department of Oncology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Chen Luo
- Department of Oncology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Lingmin Liao
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- Department of Ultrasound, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
4
|
Li W, Bai R, Guo H, Cui J. Epidermal growth factor receptor compound and concomitant mutations: advances in precision treatment strategies. Chin Med J (Engl) 2023; 136:2776-2786. [PMID: 37369640 PMCID: PMC10686611 DOI: 10.1097/cm9.0000000000002548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 06/29/2023] Open
Abstract
ABSTRACT Epidermal growth factor receptor ( EGFR ) mutations are common oncogenic driver mutations in patients with non-small cell lung cancer (NSCLC). The application of EGFR-tyrosine kinase inhibitors (TKIs) is beneficial for patients with advanced and early-stage NSCLC. With the development of next-generation sequencing technology, numerous patients have been found to have more than one genetic mutation in addition to a single EGFR mutation; however, the efficacy of conventional EGFR-TKIs and the optimal treatments for such patients remain largely unknown. Thus, we review the incidence, prognosis, and current treatment regimens of EGFR compound mutations and EGFR concomitant mutations to provide treatment recommendations and guidance for patients with these mutations.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | | | | | | |
Collapse
|
5
|
Quick QA. Efficacy of PP121 in primary and metastatic non‑small cell lung cancers. Biomed Rep 2023; 18:29. [PMID: 36926188 PMCID: PMC10011948 DOI: 10.3892/br.2023.1611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Tyrosine kinase inhibitors are a clinically standard treatment option for non-small cell lung cancers (NSCLCs), the leading cause of cancer-related deaths in the US. These targeted agents include first, second and third generation tyrosine kinase inhibitors; however, these lack clinical efficacy in the treatment of NSCLC due to intrinsic and acquired resistance. This resistance may be a result of genetic aberrations in oncogenic signaling mediators of divergent pathways. The present study aimed to investigate a novel dual tyrosine kinase and PI3K inhibitor, PP121, as a targeted agent in NSCLC cell lines. The present study co-cultured PP121 with healthy human astrocytes, a prevalent cell type located in the brain of NSCLC brain metastases. To date, few preclinical studies have examined the efficacy of PP121 as an anticancer agent, and to the best of my knowledge, no previous studies have previously evaluated its therapeutic potential in the treatment of NSCLC. To investigate the clinical heterogeneity of NSCLC, patient-derived adenocarcinoma (ADC) and squamous cell carcinoma (SCC) xenograft models were used, which exhibited epidermal growth factor receptor (EGFR) mutations and mesenchymal-epithelial transition (MET) factor amplifications. Notably, both EGFR and MET are known contributors to tyrosine kinase inhibitor resistance; thus, the aforementioned mutations and amplifications enabled the effects of PP121 to be evaluated in these solid tumors. In addition, a co-cultured model system using both NSCLC cells and astrocytes was employed to assess the effects of PP121 on the invasion of ADC and SCC cells in a multicellular environment. Results of the present study demonstrated that PP121 exerted an antitumorigenic effect in the aforementioned model systems via downregulation of pharmacodynamic targets.
Collapse
Affiliation(s)
- Quincy A Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
6
|
Chen D, Liu J, Zang L, Xiao T, Zhang X, Li Z, Zhu H, Gao W, Yu X. Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients. Int J Biol Sci 2022; 18:360-373. [PMID: 34975338 PMCID: PMC8692161 DOI: 10.7150/ijbs.66913] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has made great progress in hepatocellular carcinoma (HCC), yet there is still a lack of biomarkers for predicting response to it. Cancer stem cells (CSCs) are the primary cause of the tumorigenesis, metastasis, and multi-drug resistance of HCC. This study aimed to propose a novel CSCs-related cluster of HCC to predict patients' response to immunotherapy. Based on RNA-seq datasets from The Cancer Genome Atlas (TCGA) and Progenitor Cell Biology Consortium (PCBC), one-class logistic regression (OCLR) algorithm was applied to compute the stemness index (mRNAsi) of HCC patients. Unsupervised consensus clustering was performed to categorize HCC patients into two stemness subtypes which further proved to be a predictor of tumor immune microenvironment (TIME) status, immunogenomic expressions and sensitivity to neoadjuvant therapies. Finally, four machine learning algorithms (LASSO, RF, SVM-RFE and XGboost) were applied to distinguish different stemness subtypes. Thus, a five-hub-gene based classifier was constructed in TCGA and ICGC HCC datasets to predict patients' stemness subtype in a more convenient and applicable way, and this novel stemness-based classification system could facilitate the prognostic prediction and guide clinical strategies of immunotherapy and targeted therapy in HCC.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jixing Liu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Longjun Zang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tijun Xiao
- Department of General Surgery, Shaoyang University Affiliated Second Hospital, Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, P.R. China
| | - Zheng Li
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, P.R. China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG. The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 2022; 22:133. [PMID: 35331234 PMCID: PMC8944087 DOI: 10.1186/s12935-022-02539-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053 Shangdong China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, 250013 Shangdong China
| | - Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053 Shangdong China
| | - Qi-Ming Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, 250013 Shangdong China
| | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| |
Collapse
|
8
|
Tian Z, Niu X, Yao W. Efficacy and Response Biomarkers of Apatinib in the Treatment of Malignancies in China: A Review. Front Oncol 2021; 11:749083. [PMID: 34676173 PMCID: PMC8525889 DOI: 10.3389/fonc.2021.749083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023] Open
Abstract
Apatinib is a multitarget tyrosine kinase inhibitor marketed in China for the treatment of advanced gastric cancer (GC) and hepatocellular carcinoma (HCC). It has also been used off-label for the treatment of many other malignancies. To comprehensively evaluate the efficacy of apatinib as a targeted therapy in the treatment of malignancies, we conducted systematic online and manual searches of the literature on apatinib in the treatment of malignancies. In this review, we first summarized the efficacy of apatinib against various malignancies based on clinical trials where results have been reported. In prospectively registered trials, apatinib has been proven to be effective against GC, HCC, lung cancer, breast cancer, sarcoma, esophageal cancer, colorectal cancer, ovarian cancer, cervical cancer, cholangiocarcinoma, diffuse large B-cell lymphoma, nasopharyngeal carcinoma, and differentiated thyroid cancer. The response biomarkers for apatinib were also reviewed. This review will serve as a good reference for the application of apatinib in clinical studies and the design of clinical trials.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, Yin J, Zhu J, Zhong C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:266. [PMID: 34429133 PMCID: PMC8385858 DOI: 10.1186/s13046-021-02069-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02069-4. Apatinib suppressed proliferation, induced cell cycle arrest and apoptosis, and inhibited malignancy in NSCLC in vitro and in vivo. Apatinib downregulated PD-L1 and c-Myc in NSCLC through VEGFR2/STAT3 pathway. Apatinib inhibited PD-L1 expression in THP-1 derived macrophages stimulated by the conditioned medium from NSCLC cells and partially restored the activation of Jurkat T cells co-cultured with NSCLC cells. Apatinib induced ROS generation and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Chunhua Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Miaomiao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China. .,Cancer Research Division, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
10
|
许 子, 李 峻. [Review on the Combination Strategy of Anti-angiogenic Agents
and Other Anti-tumor Agents in Advanced Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:357-364. [PMID: 34034460 PMCID: PMC8174111 DOI: 10.3779/j.issn.1009-3419.2021.101.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/07/2022]
Abstract
Treatments for advanced non-small cell lung cancer (NSCLC) include chemotherapy, targeted therapy, and immunotherapy represented by immune checkpoint inhibitors. However, the efficacy of monotherapy is still limited. Nowdays, combination strategy has drawn great attention. Anti-angiogenic agents are widely used in treating advanced NSCLC, which can not only suppress the growth and metastasis of tumor by suppressing tumor vessels, and also have synergic effect with other anti-tumor agents because they can normalize vessels and regulate immune micro-environment. This article summarizes the underlying mechanism of combining anti-angiogenic agents and other anti-tumor agents, reviews the clinical trials on the combination strategy including monoclonal antibodies and tyrosine kinase inhibitor, so as to provide a potential strategy for treating advanced NSCLC.
.
Collapse
Affiliation(s)
- 子宜 许
- />100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - 峻岭 李
- />100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Apatinib suppresses lung cancer stem-like cells by complex interplay between β-catenin signaling and mitochondrial ROS accumulation. Cell Death Discov 2021; 7:102. [PMID: 33980809 PMCID: PMC8115647 DOI: 10.1038/s41420-021-00480-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The abnormal activation of Wnt/β-catenin signaling plays a critical role in the development of lung cancer, which is also important in the generation and maintenance of lung cancer stem cell (CSC). CSCs have unique capabilities to resist anticancer therapy, seed recurrent tumors, and disseminate to and colonize distant tissues. Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, shows highly efficient antitumor activity in heavily treated, chemoresistant, and metastatic lung cancer. We speculated that inhibition of Wnt/β-catenin signaling and targeting lung CSCs could be one of the anti-tumor mechanisms of apatinib. In the present study we demonstrated that apatinib repressed lung CSC-like traits by hindering sphere formation ability, lung CSC-related marker expression and decreasing chemoresistance derived stemness. Mechanistically, apatinib exerted its anti-CSC effects by inhibiting β-catenin and its downstream targets. Moreover, apatinib induced the production of reactive oxyen species (ROS), which participated in the inhibitory effects of apatinib on lung CSCs. It was found that β-catenin regulated apatinib-induced production of ROS. Inhibition or promotion of ROS production with N-acetyl-L-cysteine or H2O2 not only upregulated or downregulated β-catenin expression, but also prevented or promoted DNA damage, rescued or impeded sphere formation, respectively. Collectively, our findings reveal that apatinib directly inhibits β-catenin signaling and promotes ROS generation to suppress lung CSC-like characteristics. A clearer understanding of the anti-cancer mechanisms of apatinib is required for its better application in combating advanced and refractory/recurrent lung cancer when combined with conventional chemotherapy.
Collapse
|
12
|
Zhang Z, Zhang Y, Luo F, Ma Y, Fang W, Zhan J, Li S, Yang Y, Zhao Y, Hong S, Zhou T, Zhang Y, Zhao S, Huang Y, Zhao H, Zhang L. Dual blockade of EGFR and VEGFR pathways: Results from a pilot study evaluating apatinib plus gefitinib as a first-line treatment for advanced EGFR-mutant non-small cell lung cancer. Clin Transl Med 2020; 10:e33. [PMID: 32508029 PMCID: PMC7403827 DOI: 10.1002/ctm2.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Dual blockade of both EGFR and VEGFR pathways in EGFR‐mutant NSCLC have shown enhanced antitumor efficacy versus EGFR‐TKIs alone. Apatinib is an orally effective VEGFR‐2 tyrosine kinase inhibitor (TKI). This pilot study aims to evaluate the tolerability, pharmacokinetic profile, and antitumor activity of apatinib plus gefitinib as a therapy for EGFR‐mutant advanced NSCLC. Methods Advanced non‐squamous NSCLC participants harbored with the EGFR 19 deletion or the 21 L858R point mutation were included. There were two cohorts: Cohort A: apatinib 500 mg + gefitinib 250 mg. Cohort B: apatinib 250 mg + gefitinib 250 mg. The primary endpoint was safety profile. Other endpoints consisted of PK analysis, objective response rate (ORR), and progression‐free survival (PFS). Exploratory analysis was conducted using next‐generation sequencing of plasma circulating‐tumor DNA. Results Between July 2016 and April 2017, 13 of NSCLC patients were recruited. Six patients were pooled in Cohort A, while seven patients were in Cohort B. Adverse events (AEs) were tolerable (mostly grade 1–2) and the treatment‐related AEs were similar in both cohorts: rash (100% vs 71.4%), diarrhea (66.7% vs 71.4%), hypertension (66.7% vs 71.4%), proteinuria (66.7% vs 42.9%), and hand‐foot skin reaction (33.3% vs 28.6%). The area under plasma concentration‐time curve for the steady state of apatinib was 2864.73 ± 2605.54 ng mL–1 h–1 in Cohort A and 2445.09 ± 1550.89 ng mL–1 h–1 in Cohort B. Of the 11 patients evaluable for efficacy, Cohort A achieved an ORR of 80.0% and reached a median PFS of 19.2 months, while it was 83.3% and 13.4 months in Cohort B. Patients without a concomitant mutation at baseline had a prolonged PFS tendency (20.99 months v 13.21 months, P = .0624). The EGFR‐T790M mutation remained the dominant resistance mechanism. Conclusion Apatinib (500 mg) plus gefitinib (250 mg) showed a tolerable safety profile and encouraging antitumor activity for advanced EGFR‐mutant NSCLC in the first‐line setting. Phase III trials of apatinib (500 mg) plus gefitinib (250 mg) are warranted. Trial registration Clinicaltrials.gov, NCT02824458, date of registration June 23, 2016.
Collapse
Affiliation(s)
- Zhonghan Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Fan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Jing Zhan
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Su Li
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Shaodong Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Shen Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| |
Collapse
|