1
|
Pla I, Szabolcs BL, Péter PN, Ujfaludi Z, Kim Y, Horvatovich P, Sanchez A, Pawlowski K, Wieslander E, Kuras M, Murillo JR, Guedes J, Pál DM, Ascsillán AA, Betancourt LH, Németh IB, Gil J, de Almeida NP, Szeitz B, Szadai L, Doma V, Woldmar N, Bartha Á, Pahi Z, Pankotai T, Győrffy B, Szasz AM, Domont G, Nogueira F, Kwon HJ, Appelqvist R, Kárpáti S, Fenyö D, Malm J, Marko‐Varga G, Kemény LV. Unbiased Drug Target Prediction Reveals Sensitivity to Ferroptosis Inducers, HDAC and RTK Inhibitors in Melanoma Subtypes. Int J Dermatol 2025; 64:870-881. [PMID: 39722169 PMCID: PMC12008611 DOI: 10.1111/ijd.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. OBJECTIVE Here, we mine large-scale MM proteogenomic data to identify druggable targets and forecast treatment efficacy and resistance. METHODS Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC, and AKT1, across five distinct MM subtypes. These proteins are potential drug targets applicable to one or multiple MM subtypes. Additionally, by integrating proteogenomic profiles obtained from MM subtypes with MM cell line dependency and drug sensitivity data, we identified a total of 162 potentially targetable genes. Lastly, we identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. RESULTS Employing these unbiased approaches, we have uncovered compounds targeting ferroptosis demonstrating a striking 30× fold difference in sensitivity among different subtypes. CONCLUSIONS Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy.
Collapse
Affiliation(s)
- Indira Pla
- Department of Biomedical Engineering, Faculty of EngineeringLTH, Lund UniversityLundSweden
- European Cancer Moonshot Lund CenterLundSweden
| | - Botond L. Szabolcs
- HCEMM‐SU Translational Dermatology Research GroupSemmelweis UniversityBudapestHungary
- Department of Physiology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- Department of Dermatology, Venereology and Dermatooncology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- MTA‐SE Lendület “Momentum” Dermatology Research GroupHungarian Academy of Sciences and Semmelweis UniversityBudapestHungary
| | - Petra Nikolett Péter
- HCEMM‐SU Translational Dermatology Research GroupSemmelweis UniversityBudapestHungary
- Department of Physiology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- Department of Dermatology, Venereology and Dermatooncology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- Department of Dermatology and Allergology, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
| | - Zsuzsanna Ujfaludi
- Department of Pathology, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and InnovationUniversity of SzegedSzegedHungary
| | - Yonghyo Kim
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
| | - Peter Horvatovich
- Groningen Research Institute of Pharmacy, Analytical Biochemistry, University of GroningenGroningenThe Netherlands
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational MedicineSkåne University Hospital MalmöMalmöSweden
| | - Krzysztof Pawlowski
- Section for Clinical Chemistry, Department of Translational MedicineSkåne University Hospital MalmöMalmöSweden
- Department of Biochemistry and MicrobiologyWarsaw University of Life SciencesWarszawaPoland
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Elisabet Wieslander
- Section for Clinical Chemistry, Department of Translational MedicineSkåne University Hospital MalmöMalmöSweden
| | - Magdalena Kuras
- Department of Biomedical Engineering, Faculty of EngineeringLTH, Lund UniversityLundSweden
- European Cancer Moonshot Lund CenterLundSweden
| | | | - Jéssica Guedes
- European Cancer Moonshot Lund CenterLundSweden
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical EngineeringLund UniversityLundSweden
- Chemistry Institute Federal, University of Rio de JaneiroRio de JaneiroBrazil
| | - Dorottya M.P. Pál
- HCEMM‐SU Translational Dermatology Research GroupSemmelweis UniversityBudapestHungary
- Department of Physiology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- Department of Dermatology, Venereology and Dermatooncology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Anna A. Ascsillán
- HCEMM‐SU Translational Dermatology Research GroupSemmelweis UniversityBudapestHungary
- Department of Physiology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- Department of Dermatology, Venereology and Dermatooncology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Lazaro Hiram Betancourt
- European Cancer Moonshot Lund CenterLundSweden
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical EngineeringLund UniversityLundSweden
| | - István Balázs Németh
- Department of Dermatology and Allergology, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
| | - Jeovanis Gil
- European Cancer Moonshot Lund CenterLundSweden
- Department of Translational MedicineLund UniversityLundSweden
| | - Natália Pinto de Almeida
- European Cancer Moonshot Lund CenterLundSweden
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical EngineeringLund UniversityLundSweden
- Chemistry Institute Federal, University of Rio de JaneiroRio de JaneiroBrazil
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Leticia Szadai
- Department of Dermatology and Allergology, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
| | - Viktória Doma
- Department of Dermatology and Allergology, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
| | - Nicole Woldmar
- European Cancer Moonshot Lund CenterLundSweden
- Thermo Fisher ScientificWalthamMAUSA
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical EngineeringLund UniversityLundSweden
| | - Áron Bartha
- Department of BioinformaticsSemmelweis UniversityBudapestHungary
- Research Centre for Natural SciencesInstitute of Molecular Life SciencesBudapestHungary
| | - Zoltan Pahi
- MTA‐SE Lendület “Momentum” Dermatology Research GroupHungarian Academy of Sciences and Semmelweis UniversityBudapestHungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core GroupUniversity of SzegedSzegedHungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent‐Györgyi Medical SchoolUniversity of SzegedSzegedHungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and InnovationUniversity of SzegedSzegedHungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core GroupUniversity of SzegedSzegedHungary
| | - Balázs Győrffy
- Division of Oncology, Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
- Research Centre for Natural SciencesInstitute of Molecular Life SciencesBudapestHungary
| | - A. Marcell Szasz
- Division of Oncology, Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Gilberto Domont
- Chemistry Institute Federal, University of Rio de JaneiroRio de JaneiroBrazil
| | - Fábio Nogueira
- Proteomics UnitInstitute of Chemistry and Research Center for Precision Medicine, Institute of Biophysics Carlos Chagas Filho, Federal Univesity of Rio de JaneiroRio de JaneiroBrazil
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of BiotechnologyCollege of Life Science and Biotechnology, Yonsei UniversitySeoulKorea
| | - Roger Appelqvist
- European Cancer Moonshot Lund CenterLundSweden
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical EngineeringLund UniversityLundSweden
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of MedicineNew YorkNYUSA
- Department of Biochemistry and Molecular PharmacologyNYU Grossman School of MedicineNew YorkNYUSA
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational MedicineSkåne University Hospital MalmöMalmöSweden
| | - György Marko‐Varga
- European Cancer Moonshot Lund CenterLundSweden
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical EngineeringLund UniversityLundSweden
| | - Lajos V. Kemény
- HCEMM‐SU Translational Dermatology Research GroupSemmelweis UniversityBudapestHungary
- Department of Physiology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- Department of Dermatology, Venereology and Dermatooncology, Faculty of MedicineSemmelweis UniversityBudapestHungary
- MTA‐SE Lendület “Momentum” Dermatology Research GroupHungarian Academy of Sciences and Semmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Vízkeleti L, Papp O, Doma V, Gil J, Markó-Varga G, Kovács SA, Győrffy B, Kárpáti S, Tímár J. Identification of genetic fingerprint of type I interferon therapy in visceral metastases of melanoma. Sci Rep 2024; 14:26540. [PMID: 39489756 PMCID: PMC11532416 DOI: 10.1038/s41598-024-77285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Malignant melanoma is a difficult-to-treat skin cancer with increasing incidence worldwide. Although type-I interferon (IFN) is no longer part of guidelines, several melanoma patients are treated with type-I interferon (IFN) at some point of the disease, potentially affecting its genetic progression. We run genome-wide copy number variation (CNV) analysis on previously type-I IFN-treated (n = 17) and control (n = 11) visceral metastases of melanoma patients. Results were completed with data from the TCGA and MM500 databases. We identified metastasis- and brain metastasis-specific gene signatures mostly affected by CN gains. Some cases were genetically resistant to IFN showing characteristic gene alterations (e.g. ABCA4 or ZEB2 gain and alterations of DNA repair genes). Analysis of a previously identified type-I IFN resistance gene set indicates that only a proportion of these genes was exclusive for the IFN-treated metastases reflecting a possible selective genomic pressure of endogenous IFNs during progression. Our data suggest that previous type-I IFN treatment and/or endogenous IFN production by immune response affect genomic progression of melanoma which may have clinical relevance, potentially influence immune checkpoint regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
| | - Orsolya Papp
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
- Turbine Simulated Cell Technologies, Budapest, 1027, Hungary
| | - Viktória Doma
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
- Department of Dermatology, Venerology and Dermato-Oncology, Faculty of Medicine, Semmelweis University, 1085, Budapest, Hungary
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 223 63, Lund, Sweden
| | - György Markó-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 223 63, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- 1St Department of Surgery, Tokyo Medical University, Tokyo, 160-8582, Japan
| | - Szonja A Kovács
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venerology and Dermato-Oncology, Faculty of Medicine, Semmelweis University, 1085, Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary.
| |
Collapse
|
3
|
Szadai L, Bartha A, Parada IP, Lakatos AI, Pál DM, Lengyel AS, de Almeida NP, Jánosi ÁJ, Nogueira F, Szeitz B, Doma V, Woldmar N, Guedes J, Ujfaludi Z, Pahi ZG, Pankotai T, Kim Y, Győrffy B, Baldetorp B, Welinder C, Szasz AM, Betancourt L, Gil J, Appelqvist R, Kwon HJ, Kárpáti S, Kuras M, Murillo JR, Németh IB, Malm J, Fenyö D, Pawłowski K, Horvatovich P, Wieslander E, Kemény LV, Domont G, Marko-Varga G, Sanchez A. Predicting immune checkpoint therapy response in three independent metastatic melanoma cohorts. Front Oncol 2024; 14:1428182. [PMID: 39015503 PMCID: PMC11249723 DOI: 10.3389/fonc.2024.1428182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Methods Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Results Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Discussion Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.
Collapse
Affiliation(s)
- Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Aron Bartha
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Indira Pla Parada
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Alexandra I.T. Lakatos
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Dorottya M.P. Pál
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Anna Sára Lengyel
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Natália Pinto de Almeida
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Ágnes Judit Jánosi
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Fábio Nogueira
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Beata Szeitz
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Viktória Doma
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Nicole Woldmar
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Jéssica Guedes
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Zsuzsanna Ujfaludi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Zoltán Gábor Pahi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary
| | - Yonghyo Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Molecular Life Sciences, Budapest, Hungary
| | - Bo Baldetorp
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A. Marcell Szasz
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Lazaro Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Peter Horvatovich
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Elisabet Wieslander
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lajos V. Kemény
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Gilberto Domont
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero, Brazil
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
- First Department of Surgery, Tokyo Medical University, Nishishinjiku, Shinjiku-ku, Tokyo, Japan
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| |
Collapse
|
4
|
Pinto de Almeida N, Jánosi ÁJ, Hong R, Rajeh A, Nogueira F, Szadai L, Szeitz B, Pla Parada I, Doma V, Woldmar N, Guedes J, Újfaludi Z, Bartha A, Kim Y, Welinder C, Baldetorp B, Kemény LV, Pahi Z, Wan G, Nguyen N, Pankotai T, Győrffy B, Pawłowski K, Horvatovich P, Szasz AM, Sanchez A, Kuras M, Rodriguez Murillo J, Betancourt L, Domont GB, Semenov YR, Yu K, Kwon HJ, Németh IB, Fenyő D, Wieslander E, Marko‐Varga G, Gil J. Mitochondrial dysfunction and immune suppression in BRAF V600E-mutated metastatic melanoma. Clin Transl Med 2024; 14:e1773. [PMID: 39032005 PMCID: PMC11259597 DOI: 10.1002/ctm2.1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
|
5
|
Szadai L, Bartha A, Parada IP, Lakatos A, Pál D, Lengyel AS, de Almeida NP, Jánosi ÁJ, Nogueira F, Szeitz B, Doma V, Woldmar N, Guedes J, Ujfaludi Z, Pahi ZG, Pankotai T, Kim Y, Győrffy B, Baldetorp B, Welinder C, Szasz AM, Betancourt L, Gil J, Appelqvist R, Kwon HJ, Kárpáti S, Kuras M, Murillo JR, Németh IB, Malm J, Fenyö D, Pawłowski K, Horvatovich P, Wieslander E, Kemény LV, Domont G, MarkoVarga G, Sanchez A. Predicting immune checkpoint therapy response in three independent metastatic melanoma cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592032. [PMID: 38746333 PMCID: PMC11092593 DOI: 10.1101/2024.05.01.592032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making. Abstract Figure
Collapse
|
6
|
Pla I, Szabolcs BL, Péter PN, Ujfaludi Z, Kim Y, Horvatovich P, Sanchez A, Pawlowski K, Wieslander E, Guedes J, Pál DM, Ascsillán AA, Betancourt LH, Németh IB, Gil J, de Almeida NP, Szeitz B, Szadai L, Doma V, Woldmar N, Bartha Á, Pahi Z, Pankotai T, Győrffy B, Szasz AM, Domont G, Nogueira F, Kwon HJ, Appelqvist R, Kárpáti S, Fenyö D, Malm J, Marko-Varga G, Kemény LV. Identifying Ferroptosis Inducers, HDAC, and RTK Inhibitor Sensitivity in Melanoma Subtypes through Unbiased Drug Target Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579424. [PMID: 38545623 PMCID: PMC10970840 DOI: 10.1101/2024.02.08.579424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.
Collapse
|
7
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
8
|
Szadai L, Guedes JDS, Woldmar N, de Almeida NP, Jánosi ÁJ, Rajeh A, Kovács F, Kriston A, Migh E, Wan G, Nguyen N, Oskolás H, Appelqvist R, Nogueira FCN, Domont GB, Yu K, Semenov ER, Malm J, Rezeli M, Wieslander E, Fenyö D, Kemény L, Horvath P, Németh IB, Marko‐Varga G, Gil J. Mitochondrial and immune response dysregulation in melanoma recurrence. Clin Transl Med 2023; 13:e1495. [PMID: 37990633 PMCID: PMC10663649 DOI: 10.1002/ctm2.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Leticia Szadai
- Department of Dermatology and AllergologyUniversity of SzegedSzegedHungary
| | - Jéssica de Siqueira Guedes
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund UniversityLundSweden
- Chemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Nicole Woldmar
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund UniversityLundSweden
- Chemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Natália Pinto de Almeida
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund UniversityLundSweden
- Chemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Ágnes Judit Jánosi
- Department of Dermatology and AllergologyUniversity of SzegedSzegedHungary
| | - Ahmad Rajeh
- Department of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ferenc Kovács
- Synthetic and Systems Biology UnitBiological Research CentreEötvös Loránd Research NetworkSzegedHungary
| | - András Kriston
- Synthetic and Systems Biology UnitBiological Research CentreEötvös Loránd Research NetworkSzegedHungary
| | - Ede Migh
- Synthetic and Systems Biology UnitBiological Research CentreEötvös Loránd Research NetworkSzegedHungary
| | - Guihong Wan
- Department of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Nga Nguyen
- Department of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Henriett Oskolás
- Section for Clinical ChemistryDepartment of Translational MedicineLund UniversityLundSweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund UniversityLundSweden
| | - Fábio CN Nogueira
- Chemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Gilberto B Domont
- Chemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Kun‐Hsing Yu
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Eugene R. Semenov
- Department of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Johan Malm
- Section for Clinical ChemistryDepartment of Translational MedicineLund UniversityLundSweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund UniversityLundSweden
| | - Elisabet Wieslander
- Section for Clinical ChemistryDepartment of Translational MedicineLund UniversityLundSweden
| | - David Fenyö
- Department of Biochemistry and Molecular PharmacologyInstitute for Systems GeneticsNew York University Grossman School of MedicineNew YorkUSA
| | - Lajos Kemény
- Department of Dermatology and AllergologyUniversity of SzegedSzegedHungary
| | - Peter Horvath
- Synthetic and Systems Biology UnitBiological Research CentreEötvös Loránd Research NetworkSzegedHungary
| | | | - György Marko‐Varga
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund UniversityLundSweden
- Chemical Genomics Global Research LabDepartment of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulSouth Korea
- First Department of SurgeryTokyo Medical UniversityTokyoJapan
| | - Jeovanis Gil
- Section for Clinical ChemistryDepartment of Translational MedicineLund UniversityLundSweden
| |
Collapse
|
9
|
Wang H, Dai C, Pfeuffer J, Sachsenberg T, Sanchez A, Bai M, Perez-Riverol Y. Tissue-based absolute quantification using large-scale TMT and LFQ experiments. Proteomics 2023; 23:e2300188. [PMID: 37488995 DOI: 10.1002/pmic.202300188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Relative and absolute intensity-based protein quantification across cell lines, tissue atlases and tumour datasets is increasingly available in public datasets. These atlases enable researchers to explore fundamental biological questions, such as protein existence, expression location, quantity and correlation with RNA expression. Most studies provide MS1 feature-based label-free quantitative (LFQ) datasets; however, growing numbers of isobaric tandem mass tags (TMT) datasets remain unexplored. Here, we compare traditional intensity-based absolute quantification (iBAQ) proteome abundance ranking to an analogous method using reporter ion proteome abundance ranking with data from an experiment where LFQ and TMT were measured on the same samples. This new TMT method substitutes reporter ion intensities for MS1 feature intensities in the iBAQ framework. Additionally, we compared LFQ-iBAQ values to TMT-iBAQ values from two independent large-scale tissue atlas datasets (one LFQ and one TMT) using robust bottom-up proteomic identification, normalisation and quantitation workflows.
Collapse
Affiliation(s)
- Hong Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chengxin Dai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Julianus Pfeuffer
- Algorithmic Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Timo Sachsenberg
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
- Institute for Biological and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Mingze Bai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
10
|
Teh R, Azimi A, Pupo GM, Ali M, Mann GJ, Fernández-Peñas P. Genomic and proteomic findings in early melanoma and opportunities for early diagnosis. Exp Dermatol 2023; 32:104-116. [PMID: 36373875 DOI: 10.1111/exd.14705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Overdiagnosis of early melanoma is a significant problem. Due to subtle unique and overlapping clinical and histological criteria between pigmented lesions and the risk of mortality from melanoma, some benign pigmented lesions are diagnosed as melanoma. Although histopathology is the gold standard to diagnose melanoma, there is a demand to find alternatives that are more accurate and cost-effective. In the current "omics" era, there is gaining interest in biomarkers to help diagnose melanoma early and to further understand the mechanisms driving tumor progression. Genomic investigations have attempted to differentiate malignant melanoma from benign pigmented lesions. However, genetic biomarkers of early melanoma diagnosis have not yet proven their value in the clinical setting. Protein biomarkers may be more promising since they directly influence tissue phenotype, a result of by-products of genomic mutations, posttranslational modifications and environmental factors. Uncovering relevant protein biomarkers could increase confidence in their use as diagnostic signatures. Currently, proteomic investigations of melanoma progression from pigmented lesions are limited. Studies have previously characterised the melanoma proteome from cultured cell lines and clinical samples such as serum and tissue. This has been useful in understanding how melanoma progresses into metastasis and development of resistance to adjuvant therapies. Currently, most studies focus on metastatic melanoma to find potential drug therapy targets, prognostic factors and markers of resistance. This paper reviews recent advancements in the genomics and proteomic fields and reports potential avenues, which could help identify and differentiate melanoma from benign pigmented lesions and prevent the progression of melanoma.
Collapse
Affiliation(s)
- Rachel Teh
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ali Azimi
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Gulietta M Pupo
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Marina Ali
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia
| | - Graham J Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pablo Fernández-Peñas
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Apriamashvili G, Vredevoogd DW, Krijgsman O, Bleijerveld OB, Ligtenberg MA, de Bruijn B, Boshuizen J, Traets JJH, D'Empaire Altimari D, van Vliet A, Lin CP, Visser NL, Londino JD, Sanchez-Hodge R, Oswalt LE, Altinok S, Schisler JC, Altelaar M, Peeper DS. Ubiquitin ligase STUB1 destabilizes IFNγ-receptor complex to suppress tumor IFNγ signaling. Nat Commun 2022; 13:1923. [PMID: 35395848 PMCID: PMC8993893 DOI: 10.1038/s41467-022-29442-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/11/2022] [Indexed: 12/30/2022] Open
Abstract
The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.
Collapse
Affiliation(s)
- Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Proteomics Core Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Daniela D'Empaire Altimari
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - James D Londino
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, 410 W 10th Avenue, Columbus, OH, USA
| | - Rebekah Sanchez-Hodge
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Leah E Oswalt
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Selin Altinok
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Maarten Altelaar
- Proteomics Core Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Zhang L, Chen D, Song D, Liu X, Zhang Y, Xu X, Wang X. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7:111. [PMID: 35365599 PMCID: PMC8972902 DOI: 10.1038/s41392-022-00960-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The combination of spatial transcriptomics (ST) and single cell RNA sequencing (scRNA-seq) acts as a pivotal component to bridge the pathological phenomes of human tissues with molecular alterations, defining in situ intercellular molecular communications and knowledge on spatiotemporal molecular medicine. The present article overviews the development of ST and aims to evaluate clinical and translational values for understanding molecular pathogenesis and uncovering disease-specific biomarkers. We compare the advantages and disadvantages of sequencing- and imaging-based technologies and highlight opportunities and challenges of ST. We also describe the bioinformatics tools necessary on dissecting spatial patterns of gene expression and cellular interactions and the potential applications of ST in human diseases for clinical practice as one of important issues in clinical and translational medicine, including neurology, embryo development, oncology, and inflammation. Thus, clear clinical objectives, designs, optimizations of sampling procedure and protocol, repeatability of ST, as well as simplifications of analysis and interpretation are the key to translate ST from bench to clinic.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Dongsheng Chen
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Xiaoxia Liu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Yanan Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China.
| |
Collapse
|
13
|
Hegedüs L, Livingstone E, Bánkfalvi Á, Viehof J, Enyedi Á, Bilecz Á, Győrffy B, Baranyi M, Tőkés AM, Gil J, Marko-Varga G, Griewank KG, Zimmer L, Váraljai R, Sucker A, Zaremba A, Schadendorf D, Aigner C, Hegedüs B. The Prognostic Relevance of PMCA4 Expression in Melanoma: Gender Specificity and Implications for Immune Checkpoint Inhibition. Int J Mol Sci 2022; 23:3324. [PMID: 35328746 PMCID: PMC8949876 DOI: 10.3390/ijms23063324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Elisabeth Livingstone
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Ágnes Bánkfalvi
- Department of Pathology, University Medicine Essen, 45147 Essen, Germany;
| | - Jan Viehof
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Ágnes Enyedi
- Department of Transfusiology, Semmelweis University, 1085 Budapest, Hungary;
| | - Ágnes Bilecz
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1085 Budapest, Hungary;
| | - Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
| | - Klaus G. Griewank
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Lisa Zimmer
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Renáta Váraljai
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Antje Sucker
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Anne Zaremba
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Dirk Schadendorf
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Clemens Aigner
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Balázs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| |
Collapse
|
14
|
Liu X, Jiang Y, Song D, Zhang L, Xu G, Hou R, Zhang Y, Chen J, Cheng Y, Liu L, Xu X, Chen G, Wu D, Chen T, Chen A, Wang X. Clinical challenges of tissue preparation for spatial transcriptome. Clin Transl Med 2022; 12:e669. [PMID: 35083877 PMCID: PMC8792118 DOI: 10.1002/ctm2.669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Spatial transcriptomics is considered as an important part of spatiotemporal molecular images to bridge molecular information with clinical images. Of those potentials and opportunities, the excellent quality of human sample preparation and handling will ensure the precise and reliable information generated from clinical spatial transcriptome. The present study aims at defining potential factors that might influence the quality of spatial transcriptomics in lung cancer, para-cancer, or normal tissues, pathological images of sections and the RNA integrity before spatial transcriptome sequencing. We categorised potential influencing factors from clinical aspects, including patient selection, pathological definition, surgical types, sample harvest, temporary preservation conditions and solutions, frozen approaches, transport and storage conditions and duration. We emphasis on the relationship between the combination of histological scores with RNA integrity number (RIN) and the unique molecular identifier (UMI), which is determines the quality of of spatial transcriptomics; however, we did not find significantly relevance between them. Our results showed that isolated times and dry conditions of sample are critical for the UMI and the quality of spatial transcriptomic samples. Thus, clinical procedures of sample preparation should be furthermore optimised and standardised as new standards of operation performance for clinical spatial transcriptome. Our data suggested that the temporary preservation time and condition of samples at operation room should be within 30 min and in 'dry' status. The direct cryo-preservation within OCT media for human lung sample is recommended. Thus, we believe that clinical spatial transcriptome will be a decisive approach and bridge in the development of spatiotemporal molecular images and provide new insights for understanding molecular mechanisms of diseases at multi-orientations.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yujia Jiang
- BGIShenzhenChina
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Linlin Zhang
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Guang Xu
- Institute of Computer ScienceFudan UniversityShanghaiChina
| | - Rui Hou
- Shanghai Biotechnology CorporationShanghaiChina
| | - Yong Zhang
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Jian Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | | | | | - Gang Chen
- Department of PathologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Duojiao Wu
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Tianxiang Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | | | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Institute of Clinical BioinformaticsZhongshan Hospital of Fudan UniversityShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
15
|
Almeida N, Rodriguez J, Pla Parada I, Perez-Riverol Y, Woldmar N, Kim Y, Oskolas H, Betancourt L, Valdés JG, Sahlin KB, Pizzatti L, Szasz AM, Kárpáti S, Appelqvist R, Malm J, B. Domont G, C. S. Nogueira F, Marko-Varga G, Sanchez A. Mapping the Melanoma Plasma Proteome (MPP) Using Single-Shot Proteomics Interfaced with the WiMT Database. Cancers (Basel) 2021; 13:6224. [PMID: 34944842 PMCID: PMC8699267 DOI: 10.3390/cancers13246224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
Collapse
Affiliation(s)
- Natália Almeida
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
| | - Jimmy Rodriguez
- Division of Chemistry I, Department of Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden;
| | - Indira Pla Parada
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK;
| | - Nicole Woldmar
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | - Yonghyo Kim
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Lazaro Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Jeovanis Gil Valdés
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - K. Barbara Sahlin
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | | | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Roger Appelqvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Gilberto B. Domont
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Fábio C. S. Nogueira
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| |
Collapse
|
16
|
Gil J, Rezeli M, Lutz EG, Kim Y, Sugihara Y, Malm J, Semenov YR, Yu KH, Nguyen N, Wan G, Kemény LV, Kárpáti S, Németh IB, Marko-Varga G. An Observational Study on the Molecular Profiling of Primary Melanomas Reveals a Progression Dependence on Mitochondrial Activation. Cancers (Basel) 2021; 13:6066. [PMID: 34885173 PMCID: PMC8657311 DOI: 10.3390/cancers13236066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma in advanced stages is one of the most aggressive tumors and the deadliest of skin cancers. To date, the histopathological staging focuses on tumor thickness, and clinical staging is a major estimate of the clinical behavior of primary melanoma. Here we report on an observational study with in-depth molecular profiling at the protein level including post-translational modifications (PTMs) on eleven primary tumors from melanoma patients. Global proteomics, phosphoproteomics, and acetylomics were performed on each sample. We observed an up-regulation of key mitochondrial functions, including the mitochondrial translation machinery and the down-regulation of structural proteins involved in cell adhesion, the cytoskeleton organization, and epidermis development, which dictates the progression of the disease. Additionally, the PTM level pathways related to RNA processing and transport, as well as chromatin organization, were dysregulated in relation to the progression of melanoma. Most of the pathways dysregulated in this cohort were enriched in genes differentially expressed at the transcript level when similar groups are compared or metastasis to primary melanomas. At the genome level, we found significant differences in the mutation profiles between metastatic and primary melanomas. Our findings also highlighted sex-related differences in the molecular profiles. Remarkably, primary melanomas in women showed higher levels of antigen processing and presentation, and activation of the immune system response. Our results provide novel insights, relevant for developing personalized precision treatments for melanoma patients.
Collapse
Affiliation(s)
- Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden;
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 222 42 Lund, Sweden;
| | - Elmar G. Lutz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (E.G.L.); (L.V.K.); (S.K.)
| | - Yonghyo Kim
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Yutaka Sugihara
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden;
| | - Yevgeniy R. Semenov
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02110, USA; (Y.R.S.); (N.N.); (G.W.)
| | - Kun-Hsing Yu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Nga Nguyen
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02110, USA; (Y.R.S.); (N.N.); (G.W.)
| | - Guihong Wan
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02110, USA; (Y.R.S.); (N.N.); (G.W.)
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Lajos V. Kemény
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (E.G.L.); (L.V.K.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (E.G.L.); (L.V.K.); (S.K.)
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary;
| | - György Marko-Varga
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8582, Japan
| |
Collapse
|
17
|
Papp O, Doma V, Gil J, Markó-Varga G, Kárpáti S, Tímár J, Vízkeleti L. Organ Specific Copy Number Variations in Visceral Metastases of Human Melanoma. Cancers (Basel) 2021; 13:5984. [PMID: 34885093 PMCID: PMC8657127 DOI: 10.3390/cancers13235984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Malignant melanoma is one of the most aggressive skin cancers with high potential of visceral dissemination. Since the information about melanoma genomics is mainly based on primary tumors and lymphatic or skin metastases, an autopsy-based visceral metastasis biobank was established. We used copy number variation arrays (N = 38 samples) to reveal organ specific alterations. Results were partly completed by proteomic analysis. A significant increase of high-copy number gains was found in an organ-specific manner, whereas copy number losses were predominant in brain metastases, including the loss of numerous DNA damage response genes. Amplification of many immune genes was also observed, several of them are novel in melanoma, suggesting that their ectopic expression is possibly underestimated. This "immunogenic mimicry" was exclusive for lung metastasis. We also provided evidence for the possible autocrine activation of c-MET, especially in brain and lung metastases. Furthermore, frequent loss of 9p21 locus in brain metastases may predict higher metastatic potential to this organ. Finally, a significant correlation was observed between BRAF gene copy number and mutant allele frequency, mainly in lung metastases. All of these events may influence therapy efficacy in an organ specific manner, which knowledge may help in alleviating difficulties caused by resistance.
Collapse
Affiliation(s)
- Orsolya Papp
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
- Turbine Simulated Cell Technologies, 1027 Budapest, Hungary
| | - Viktória Doma
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
- Department of Dermatology, Venerology and Dermato-Oncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - György Markó-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden;
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8582, Japan
| | - Sarolta Kárpáti
- Department of Dermatology, Venerology and Dermato-Oncology, Semmelweis University, 1085 Budapest, Hungary;
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
| | - Laura Vízkeleti
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
| |
Collapse
|
18
|
Wang DC, Wang X. Discovery in clinical and translational medicine. Clin Transl Med 2021; 11:e568. [PMID: 34709762 PMCID: PMC8521278 DOI: 10.1002/ctm2.568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
With the rapid development of biotechnologies and deep improvement of knowledge, “Discovery” is the initial period and source of innovation of clinical and translational medicine. The international journal of Clinical and Translational Discovery serves to highlight unknown or unclear aspects of clinical and translational medicine‐associated knowledge, technologies, mechanisms, and therapies (https://onlinelibrary.wiley.com/journal/27680622). The Discovery aims to define the interaction between genes, proteins, and cells, and explore molecular mechanisms of intercommunication and inter‐regulation. More discoveries of technologies and equipment are expected to improve method sensitivity, specificity, stability, analysis, and clinical significance. The first priority of Clinical and Translational Discovery is to turn gene‐, protein‐, drug‐, cell‐, and interaction‐based discoveries into health advancements. Clinical and Translational Discovery highly focuses on the discoveries of biological therapies and precision medicine‐based therapy elicited from computational chemistry, DNA libraries, target‐dependent small molecular drugs, high‐throughput screening, vaccination, immune therapy, cell implantations, gene editing, and RNA‐ or protein‐based inhibitors. Thus, Clinical and Translational Discovery sincerely welcome you to join and share the rapid development and future successes to come.
Collapse
Affiliation(s)
- Diane C Wang
- Department of Emergency Medicine, Sunshine Coast University Hospital, Sunshine Coast, Australia
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Fudan University Zhongshan Hospital, Shanghai, P. R. China
| |
Collapse
|