1
|
Fedlaoui B, Cosentino T, Al Sayed ZR, Alexandre Coelho R, Giscos-Douriez I, Faedda N, Fayad M, Hulot JS, Magnus CJ, Sternson SM, Travers-Allard S, Baron S, Penton D, Fernandes-Rosa FL, Zennaro MC, Boulkroun S. Modulation of Calcium Signaling on Demand to Decipher the Molecular Mechanisms of Primary Aldosteronism. Hypertension 2025; 82:716-732. [PMID: 39936308 DOI: 10.1161/hypertensionaha.124.23295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Primary aldosteronism is the most common form of secondary hypertension. The most frequent genetic cause of aldosterone-producing adenomas is somatic mutations in the potassium channel KCNJ5. They affect the ion selectivity of the channel, with sodium influx leading to cell membrane depolarization and activation of calcium signaling, the major trigger for aldosterone biosynthesis. METHODS To investigate how KCNJ5 mutations lead to the development of aldosterone-producing adenomas, we established an adrenocortical cell model in which sodium entry into the cells can be modulated on demand using chemogenetic tools [H295R-S2 α7-5HT3-R (α7-5HT3 receptor) cells]. We investigated their functional and molecular characteristics with regard to aldosterone biosynthesis and cell proliferation. RESULTS A clonal cell line with stable expression of the chimeric α7-5HT3-R in H295R-S2 (human adrenocortical carcinoma cell line, Strain 2) cells was obtained. Increased sodium entry through α7-5HT3-R upon stimulation with uPSEM-817 (uPharmacologically Selective Effector Molecule-817) led to cell membrane depolarization, opening of voltage-gated Ca2+ channels, and increased intracellular Ca2+ concentrations, resulting in the stimulation of CYP11B2 expression and increased aldosterone biosynthesis. Increased intracellular sodium influx did not increase proliferation but rather induced apoptosis. RNA sequencing and steroidome analyses revealed unique profiles associated with Na+ entry, with only partial overlap with Ang II (angiotensin II) or potassium-induced changes. CONCLUSIONS H295R-S2 α7-5HT3-R cells are a new model reproducing the major features of cells harboring KCNJ5 mutations. Increased expression of CYP11B2 and stimulation of the mineralocorticoid biosynthesis pathway are associated with a decrease of cell proliferation and an increase of apoptosis, indicating that additional events may be required for the development of aldosterone-producing adenomas.
Collapse
Affiliation(s)
- Bakhta Fedlaoui
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | - Teresa Cosentino
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | - Zeina R Al Sayed
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | | | - Isabelle Giscos-Douriez
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | - Nicolo Faedda
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | - May Fayad
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | - Jean-Sebastien Hulot
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
- CIC1418 and DMU CARTE (J.-S.H.), Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Christopher J Magnus
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego (C.J.M., S.M.S.)
| | - Scott M Sternson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California San Diego (C.J.M., S.M.S.)
| | - Simon Travers-Allard
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
- Service de Physiologie (S.T.-A., S. Baron), Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Stephanie Baron
- Service de Physiologie (S.T.-A., S. Baron), Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - David Penton
- Electrophysiology Facility, University of Zurich, Switzerland (R.A.C., D.P.)
| | - Fabio L Fernandes-Rosa
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| | - Maria-Christina Zennaro
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
- Service de Génétique (M.-C.Z.), Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Sheerazed Boulkroun
- Université Paris Cité, INSERM, PARCC (Paris Cardiovascular Research Center), France (B.F., T.C., Z.R.A.S., I.G.-D., N.F., M.F., J.-S.H., S.T.-A., F.L.F.-R., M.-C.Z., S. Boulkroun)
| |
Collapse
|
2
|
Yu J, Zhao J, Shao H, Lu Y, He Y, Zhang L. Illumination compensation for microscope images based on illumination difference estimation. THE VISUAL COMPUTER 2022; 38:1775-1786. [DOI: 10.1007/s00371-021-02104-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2021] [Indexed: 01/06/2025]
|
3
|
Borah BJ, Sun CK. A rapid denoised contrast enhancement method digitally mimicking an adaptive illumination in submicron-resolution neuronal imaging. iScience 2022; 25:103773. [PMID: 35169684 PMCID: PMC8829796 DOI: 10.1016/j.isci.2022.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber, coexisting with ultrabright structures, such as a soma with a substantially higher fluorescence-protein concentration. Owing to experimental and environmental factors, a laser-scanning multiphoton optical microscope (MPM) often encounters a high-frequency background noise that might contaminate such weak-intensity ultrafine neuronal structures. A straightforward contrast enhancement often leads to the saturation of the brighter ones, and might further amplify the high-frequency background noise. We report a digital approach called rapid denoised contrast enhancement (DCE), which digitally mimics a hardware-based adaptive/controlled illumination technique by means of digitally optimizing the signal strengths and hence the visibility of such weak-intensity structures while mostly preventing the saturation of the brightest ones. With large field-of-view (FOV) two-photon excitation fluorescence (TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-the-art digital image processing algorithms. With compute-unified-device-architecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced time complexity. A real-time applicable CUDA-accelerated Noise-suppressed Contrast Enhancement method Digitally mimics a traditional hardware-based adaptive/controlled illumination Drastically improves the visibility of noise-contaminated ultrafine neuronal structures Applicable in large-field high-NFOM multiphoton optical microscopes
Collapse
Affiliation(s)
- Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Guen VJ, Gamble C, Lees JA, Colas P. The awakening of the CDK10/Cyclin M protein kinase. Oncotarget 2018; 8:50174-50186. [PMID: 28178678 PMCID: PMC5564841 DOI: 10.18632/oncotarget.15024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play important roles in the control of fundamental cellular processes. Some of the most characterized CDKs are considered to be pertinent therapeutic targets for cancers and other diseases, and first clinical successes have recently been obtained with CDK inhibitors. Although discovered in the pre-genomic era, CDK10 attracted little attention until it was identified as a major determinant of resistance to endocrine therapy for breast cancer. In some studies, CDK10 has been shown to promote cell proliferation whereas other studies have revealed a tumor suppressor function. The recent discovery of Cyclin M as a CDK10 activating partner has allowed the unveiling of a protein kinase activity against the ETS2 oncoprotein, whose degradation is activated by CDK10/Cyclin M-mediated phosphorylation. CDK10/Cyclin M has also been shown to repress ciliogenesis and to maintain actin network architecture, through the phoshorylation of the PKN2 protein kinase and the control of RhoA stability. These findings shed light on the molecular mechanisms underlying STAR syndrome, a severe human developmental genetic disorder caused by mutations in the Cyclin M coding gene. They also pave the way to a better understanding of the role of CDK10/Cyclin M in cancer.
Collapse
Affiliation(s)
- Vincent J Guen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Carly Gamble
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| |
Collapse
|
5
|
Ishizu T, Higo S, Masumura Y, Kohama Y, Shiba M, Higo T, Shibamoto M, Nakagawa A, Morimoto S, Takashima S, Hikoso S, Sakata Y. Targeted Genome Replacement via Homology-directed Repair in Non-dividing Cardiomyocytes. Sci Rep 2017; 7:9363. [PMID: 28839205 PMCID: PMC5571012 DOI: 10.1038/s41598-017-09716-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023] Open
Abstract
Although high-throughput sequencing can elucidate the genetic basis of hereditary cardiomyopathy, direct interventions targeting pathological mutations have not been established. Furthermore, it remains uncertain whether homology-directed repair (HDR) is effective in non-dividing cardiomyocytes. Here, we demonstrate that HDR-mediated genome editing using CRISPR/Cas9 is effective in non-dividing cardiomyocytes. Transduction of adeno-associated virus (AAV) containing sgRNA and repair template into cardiomyocytes constitutively expressing Cas9 efficiently introduced a fluorescent protein to the C-terminus of Myl2. Imaging-based sequential evaluation of endogenously tagged protein revealed that HDR occurs in cardiomyocytes, independently of DNA synthesis. We sought to repair a pathological mutation in Tnnt2 in cardiomyocytes of cardiomyopathy model mice. An sgRNA that avoided the mutated exon minimized deleterious effects on Tnnt2 expression, and AAV-mediated HDR achieved precise genome correction at a frequency of ~12.5%. Thus, targeted genome replacement via HDR is effective in non-dividing cardiomyocytes, and represents a potential therapeutic tool for targeting intractable cardiomyopathy.
Collapse
Affiliation(s)
- Takamaru Ishizu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasuaki Kohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mikio Shiba
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Masato Shibamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Akito Nakagawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Sachio Morimoto
- Department of Health and Medical Care, International University of Health and Welfare, Okawa, Fukuoka, 831-8501, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Leung AWY, Hung SS, Backstrom I, Ricaurte D, Kwok B, Poon S, McKinney S, Segovia R, Rawji J, Qadir MA, Aparicio S, Stirling PC, Steidl C, Bally MB. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro. PLoS One 2016; 11:e0150675. [PMID: 26938915 PMCID: PMC4777418 DOI: 10.1371/journal.pone.0150675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/16/2016] [Indexed: 01/22/2023] Open
Abstract
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | - Stacy S. Hung
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Ricaurte
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Brian Kwok
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven Poon
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven McKinney
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Jenna Rawji
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Mohammed A. Qadir
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Christian Steidl
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
7
|
Burleigh A, McKinney S, Brimhall J, Yap D, Eirew P, Poon S, Ng V, Wan A, Prentice L, Annab L, Barrett JC, Caldas C, Eaves C, Aparicio S. A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation. Breast Cancer Res 2015; 17:4. [PMID: 25572802 PMCID: PMC4322558 DOI: 10.1186/s13058-014-0510-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2014] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The extracellular signals regulating mammary epithelial cell growth are of relevance to understanding the pathophysiology of mammary epithelia, yet they remain poorly characterized. In this study, we applied an unbiased approach to understanding the functional role of signalling molecules in several models of normal physiological growth and translated these results to the biological understanding of breast cancer subtypes. METHODS We developed and utilized a cytogenetically normal clonal line of hTERT immortalized human mammary epithelial cells in a fibroblast-enhanced co-culture assay to conduct a genome-wide small interfering RNA (siRNA) screen for evaluation of the functional effect of silencing each gene. Our selected endpoint was inhibition of growth. In rigorous postscreen validation processes, including quantitative RT-PCR, to ensure on-target silencing, deconvolution of pooled siRNAs and independent confirmation of effects with lentiviral short-hairpin RNA constructs, we identified a subset of genes required for mammary epithelial cell growth. Using three-dimensional Matrigel growth and differentiation assays and primary human mammary epithelial cell colony assays, we confirmed that these growth effects were not limited to the 184-hTERT cell line. We utilized the METABRIC dataset of 1,998 breast cancer patients to evaluate both the differential expression of these genes across breast cancer subtypes and their prognostic significance. RESULTS We identified 47 genes that are critically important for fibroblast-enhanced mammary epithelial cell growth. This group was enriched for several axonal guidance molecules and G protein-coupled receptors, as well as for the endothelin receptor PROCR. The majority of genes (43 of 47) identified in two dimensions were also required for three-dimensional growth, with HSD17B2, SNN and PROCR showing greater than tenfold reductions in acinar formation. Several genes, including PROCR and the neuronal pathfinding molecules EFNA4 and NTN1, were also required for proper differentiation and polarization in three-dimensional cultures. The 47 genes identified showed a significant nonrandom enrichment for differential expression among 10 molecular subtypes of breast cancer sampled from 1,998 patients. CD79A, SERPINH1, KCNJ5 and TMEM14C exhibited breast cancer subtype-independent overall survival differences. CONCLUSION Diverse transmembrane signals are required for mammary epithelial cell growth in two-dimensional and three-dimensional conditions. Strikingly, we define novel roles for axonal pathfinding receptors and ligands and the endothelin receptor in both growth and differentiation.
Collapse
Affiliation(s)
- Angela Burleigh
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Steven McKinney
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Jazmine Brimhall
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Damian Yap
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Peter Eirew
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Steven Poon
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Viola Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Adrian Wan
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Leah Prentice
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Centre for Translational and Applied Genomics, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada.
| | - Lois Annab
- Chromatin and Gene Expression Section, Research Triangle Park, Durham, NC, 27709, USA.
| | - J Carl Barrett
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shin Centre, Cambridge, CB2 0RE, UK.
| | - Connie Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
8
|
Singh S, Bray MA, Jones TR, Carpenter AE. Pipeline for illumination correction of images for high-throughput microscopy. J Microsc 2014; 256:231-6. [PMID: 25228240 PMCID: PMC4359755 DOI: 10.1111/jmi.12178] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/12/2014] [Indexed: 12/24/2022]
Abstract
The presence of systematic noise in images in high-throughput microscopy experiments can significantly impact the accuracy of downstream results. Among the most common sources of systematic noise is non-homogeneous illumination across the image field. This often adds an unacceptable level of noise, obscures true quantitative differences and precludes biological experiments that rely on accurate fluorescence intensity measurements. In this paper, we seek to quantify the improvement in the quality of high-content screen readouts due to software-based illumination correction. We present a straightforward illumination correction pipeline that has been used by our group across many experiments. We test the pipeline on real-world high-throughput image sets and evaluate the performance of the pipeline at two levels: (a) Z′-factor to evaluate the effect of the image correction on a univariate readout, representative of a typical high-content screen, and (b) classification accuracy on phenotypic signatures derived from the images, representative of an experiment involving more complex data mining. We find that applying the proposed post-hoc correction method improves performance in both experiments, even when illumination correction has already been applied using software associated with the instrument. To facilitate the ready application and future development of illumination correction methods, we have made our complete test data sets as well as open-source image analysis pipelines publicly available. This software-based solution has the potential to improve outcomes for a wide-variety of image-based HTS experiments.
Collapse
Affiliation(s)
- S Singh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, U.S.A
| | | | | | | |
Collapse
|
9
|
PICCININI F, LUCARELLI E, GHERARDI A, BEVILACQUA A. Multi-image based method to correct vignetting effect in light microscopy images. J Microsc 2012; 248:6-22. [DOI: 10.1111/j.1365-2818.2012.03645.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent. BMC Genomics 2011; 12:209. [PMID: 21527035 PMCID: PMC3111392 DOI: 10.1186/1471-2164-12-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/28/2011] [Indexed: 11/18/2022] Open
Abstract
Background Humans and mice with loss of function mutations in GPR54 (KISS1R) or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. Results We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix) and quantitative polymerase chain reaction (QPCR) validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC). Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T) levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i) genotype only dependent regulation, (ii) T only dependent regulation, (iii) genotype and T-dependent regulation with interaction between these variables, (iv) genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2), proteases (Klk1b22), and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. Conclusions Taken together, global transcriptional profiling shows that loss of GPR54 and kisspeptin are not fully equivalent in the mouse hypothalamus.
Collapse
|
11
|
Model MA, Reese JL, Fraizer GC. Measurement of wheat germ agglutinin binding with a fluorescence microscope. Cytometry A 2010; 75:874-81. [PMID: 19722258 DOI: 10.1002/cyto.a.20787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signal intensity in fluorescence microscopy is often measured relative to arbitrary standards. We propose a calibration method based on a solution of the same fluorophore, whose binding to cells needs to be quantified. The method utilizes the low sensitivity of intensity to the object distance in wide-field imaging of uniform materials. Liquid layers of slowly varying depth were prepared by immersing a spherical lens into a drop of a fluorophore placed on a slide. Flatfield-corrected images of the contact and surrounding areas showed linear dependence of the gray level on the depth of fluorescent liquid. This allowed conversion of the measured intensity into the number of molecules per unit area. The method was applied to different cell types stained by WGA-Alexa 488 and WGA-TRITC. Consistent results were obtained by comparing microscopy with flow cytometry, comparing imaging through different objectives and comparing different WGA conjugates. Reproducibility of calibration was within 97% when low magnification was used. Fluorescence of free and bound WGA was found to be different, however, and therefore precise measurement of the number of cell-bound molecules was problematic in this particular system. We conclude that the method achieves reliable measurement of cellular staining in the units of soluble fluorophore. For probes whose fluorescent properties are unaffected by binding, quantification of staining in true molecular units should be possible.
Collapse
Affiliation(s)
- Michael A Model
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA.
| | | | | |
Collapse
|
12
|
Gasparri F. An overview of cell phenotypes in HCS: limitations and advantages. Expert Opin Drug Discov 2009; 4:643-57. [DOI: 10.1517/17460440902992870] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Chung C, Kim I, Jung Y. Considering cell‐based assays and factors for genome‐wide high‐content functional screening. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Biotech paper watch. Biotechnol J 2008. [DOI: 10.1002/biot.200890101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
|