1
|
Sabines-Chesterking J, Burenkov IA, Polyakov SV. Quantum measurement enables single biomarker sensitivity in flow cytometry. Sci Rep 2024; 14:3891. [PMID: 38365797 PMCID: PMC10873388 DOI: 10.1038/s41598-023-49145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024] Open
Abstract
We present the first unambiguous experimental method enabling single-fluorophore sensitivity in a flow cytometer using quantum properties of single-photon emitters. We use a quantum measurement based on the second-order coherence function to prove that the optical signal is produced by individual biomarkers traversing the interrogation volume of the flow cytometer from the first principles. This observation enables the use of the quantum toolbox for rapid detection, enumeration, and sorting of single fluorophores in large cell populations as well as a 'photons-to-moles' calibration of this measurement modality.
Collapse
Affiliation(s)
- J Sabines-Chesterking
- Joint Quantum Institute, University of Maryland, College Park, 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - I A Burenkov
- Joint Quantum Institute, University of Maryland, College Park, 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - S V Polyakov
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
- Department of Physics, University of Maryland, College Park, 20742, USA.
| |
Collapse
|
2
|
Sahu S, Gupta P, Susheilia S, Gautam U, Dey P. Application of multicolour flow cytometry in the detection of metastatic carcinoma in serous effusions: Special emphasis in atypical cytology. Cytopathology 2020; 32:169-179. [PMID: 33040400 DOI: 10.1111/cyt.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We evaluated the role of simultaneous use of multiple antibodies in flow cytometry (FCM) to detect metastatic carcinomas in effusion samples. METHODS Cytological examination of 75 successive cases of effusion samples was performed. There were 48 peritoneal, 26 pleural and one pericardial fluid. Multi-coloured FCM examination was undertaken using a cocktail of CD45, CD14 and epithelial cell adhesion molecule (EpCAM), antibodies tagged with different fluorochromes. The percentage of EpCAM positivity was calculated in the CD45 and CD14 dual negative population by selective gating. The EpCAM value was correlated with the cytological findings, follow-up data and MOC-31 immunostaining. RESULTS There were 20 benign, 35 malignant and 20 atypical cases diagnosed on cytomorphology. The primary sources of carcinomas were mainly from the ovary, followed by lung, gall bladder, intestine and other areas. Out of 20 cytologically benign cases, there were two malignant cases on the final follow-up, and EpCAM on FCM picked up all 18 benign cases and one malignant case. Out of 35 cytologically detected malignant cases, EpCAM picked up 32 malignant cases. The EpCAM detected 15/18 malignant and both benign cases out of 20 cytological atypical cases. EpCAM antibody by FCM showed 87% sensitivity, 100% specificity, 100% positive predictive value and 74% negative predictive value. CONCLUSION This comprehensive study highlights the potential use of multi-coloured FCM along with cytological examination to diagnose metastatic carcinoma in effusion samples. Multi-coloured FCM is rapid and quantitative and is helpful in atypical cases.
Collapse
Affiliation(s)
- Saumya Sahu
- Department of Pathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Parikshaa Gupta
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shaily Susheilia
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Upasana Gautam
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Gandullo-Sánchez L, Capone E, Ocaña A, Iacobelli S, Sala G, Pandiella A. HER3 targeting with an antibody-drug conjugate bypasses resistance to anti-HER2 therapies. EMBO Mol Med 2020; 12:e11498. [PMID: 32329582 PMCID: PMC7207167 DOI: 10.15252/emmm.201911498] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Despite impressive clinical benefit obtained with anti‐HER2‐targeted therapies, in advances stages, especially in the metastatic setting, HER2‐positive tumors remain incurable. Therefore, it is important to develop novel strategies to fight these tumors, especially when they become resistant to available therapies. We show here that the anti‐HER3 antibody–drug conjugate EV20/MMAF exerted potent anti‐tumoral properties against several models of primary resistance and secondary resistance to common anti‐HER2 available therapies, including trastuzumab, lapatinib, neratinib, and trastuzumab‐emtansine. HER3 was expressed in these HER2+ breast cancer cells and knockdown experiments demonstrated that HER3 expression was required for the action of EV20/MMAF. In mice injected with trastuzumab‐resistant HER2+ cells, a single dose of EV20/MMAF caused complete and long‐lasting tumor regression. Mechanistically, EV20/MMAF bound to cell surface HER3 and became internalized to the lysosomes. Treatment with EV20/MMAF caused cell cycle arrest in mitosis and promoted cell death through mitotic catastrophe. These findings encourage the clinical testing of EV20/MMAF for several indications in the HER2+ cancer clinic, including situations in which HER2+ tumors become refractory to approved anti‐HER2 therapies.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | | | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l, Chieti, Italy
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| |
Collapse
|
4
|
Wege AK, Chittka D, Buchholz S, Klinkhammer-Schalke M, Diermeier-Daucher S, Zeman F, Ortmann O, Brockhoff G. HER4 expression in estrogen receptor-positive breast cancer is associated with decreased sensitivity to tamoxifen treatment and reduced overall survival of postmenopausal women. Breast Cancer Res 2018; 20:139. [PMID: 30458882 PMCID: PMC6247692 DOI: 10.1186/s13058-018-1072-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The sensitivity of estrogen receptor-positive breast cancers to tamoxifen treatment varies considerably, and the molecular mechanisms affecting the response rates are manifold. The human epidermal growth factor receptor-related receptor HER2 is known to trigger intracellular signaling cascades that modulate the activity of coregulators of the estrogen receptor which, in turn, reduces the cell sensitivity to tamoxifen treatment. However, the impact of HER2-related receptor tyrosine kinases HER1, HER3, and, in particular, HER4 on endocrine treatment is largely unknown. METHODS Here, we retrospectively evaluated the importance of HER4 expression on the outcome of tamoxifen- and aromatase inhibitor-treated estrogen receptor-positive breast cancer patients (n = 258). In addition, we experimentally analyzed the efficiency of tamoxifen treatment as a function of HER4 co-expression in vitro. RESULTS We found a significantly improved survival in tamoxifen-treated postmenopausal breast cancer patients in the absence of HER4 compared with those with pronounced HER4 expression. In accordance with this finding, the sensitivity to tamoxifen treatment of estrogen and HER4 receptor-positive ZR-75-1 breast cancer cells can be significantly enhanced by HER4 knockdown. CONCLUSION We suggest an HER4/estrogen receptor interaction that impedes tamoxifen binding to the estrogen receptor and reduces treatment efficiency. Whether the sensitivity to tamoxifen treatment can be enhanced by anti-HER4 targeting needs to be prospectively evaluated.
Collapse
Affiliation(s)
- Anja Kathrin Wege
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Dominik Chittka
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.,Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Buchholz
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | | | | | - Florian Zeman
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Gero Brockhoff
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Lamarca A, Galdy S, Barriuso J, Moghadam S, Beckett E, Rogan J, Backen A, Billington C, McNamara MG, Hubner RA, Cramer A, Valle JW. The HER3 pathway as a potential target for inhibition in patients with biliary tract cancers. PLoS One 2018; 13:e0206007. [PMID: 30335866 PMCID: PMC6193702 DOI: 10.1371/journal.pone.0206007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Expression of human epidermal growth factor receptor (HER)2 and HER3 have been investigated in small BTC studies using variable scoring systems. METHODS HER2 and HER3 overexpression/amplification were explored following internationally agreed guidelines using immunohistochemistry (IHC) and fluorescent in-situ hybridisation (FISH), respectively. Logistic regression and survival analysis (Kaplan Meier, Log rank test and Cox Regression) were used for statistical analysis. RESULTS Sixty-seven eligible patients with Stage I/II (31.3%) or III/IV (68.7%) disease at diagnosis were included. Membrane HER2 overexpression/amplification was identified in 1 patient (1%). HER3 overexpression was predominantly cytoplasmic; the rate of overexpression/amplification of HER3 in membrane and cytoplasm was 16% [ampullary cancer (AMP) (1/13; 8%), gallbladder cancer (GBC) (1/10; 10%), intra-hepatic cholangiocarcinoma (ICC) (6/26; 23%), extra-hepatic cholangiocarcinoma (ECC) (3/18; 17%)] and 24% [AMP (1/13; 8%), GBC (1/10; 10%), ICC (10/26; 38%), ECC (4/18; 22%)], respectively. CONCLUSIONS A significant subset of patients with BTC expressed HER3. Inhibition of HER3 warrants further investigation. A better understanding of the downstream effects of HER3 in BTC requires further mechanistic investigations to identify new biomarkers and improve patient selection for future clinical trials.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Salvatore Galdy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, Milan, Italy
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sharzad Moghadam
- Manchester Cancer Research Centre Biobank, University of Manchester, Manchester, United Kingdom
| | - Elizabeth Beckett
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jane Rogan
- Manchester Cancer Research Centre Biobank, University of Manchester, Manchester, United Kingdom
| | - Alison Backen
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Catherine Billington
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G. McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Angela Cramer
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Juan W. Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Szalóki G, Goda K. Compensation in multicolor flow cytometry. Cytometry A 2015; 87:982-5. [DOI: 10.1002/cyto.a.22736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Gábor Szalóki
- Department of Biophysics and Cell Biology; Faculty of Medicine, University of Debrecen; Debrecen H-4032 Hungary
| | - Katalin Goda
- Department of Biophysics and Cell Biology; Faculty of Medicine, University of Debrecen; Debrecen H-4032 Hungary
| |
Collapse
|
7
|
Portier BP, Minca EC, Wang Z, Lanigan C, Gruver AM, Downs-Kelly E, Budd GT, Tubbs RR. HER4 expression status correlates with improved outcome in both neoadjuvant and adjuvant Trastuzumab treated invasive breast carcinoma. Oncotarget 2014; 4:1662-72. [PMID: 24091566 PMCID: PMC3858553 DOI: 10.18632/oncotarget.1232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Prognostic and predictive markers utilized in invasive breast carcinoma are limited and include ER, PR, Ki67, and ERBB2 (HER2). In the case of HER2, over-expression or amplification serves as eligibility for anti-HER2 based therapy, including trastuzumab (Herceptin®, Genentech). While clinical trials have shown trastuzumab improves overall survival and time to progression, an individual's response to anti-HER2 based therapy is highly variable. This suggests that, in a “uniform” HER2 positive population, additional markers could help in predicting patient outcome to therapy. Here we utilized a recently validated high-specificity HER4 antibody (E200) and generated a standard clinical HER4 scoring algorithm (HER4 H-Score) utilizing two breast carcinoma cohorts: 1) patients receiving neoadjuvant trastuzumab (n=47) and 2) patients receiving trastuzumab for metastatic disease (n=33). Our HER4 H-Score showed significant correlation with high sensitivity RT-qPCR performed on matched patients (p=<0.0001). In addition, patients with HER2/HER4 co-over-expression status showed a significant delay in development of metastasis after neo-adjuvant trastuzumab therapy (p= 0.04) and showed a significant improvement in progression free survival after adjuvant trastuzumab therapy (p=0.03). These findings suggest HER4 IHC, used in conjunction with a standard HER2 testing algorithm, could aid in predicting clinical outcome and help identify patients likely to show improved response to trastuzumab therapy.
Collapse
Affiliation(s)
- Bryce P Portier
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jay JI, Brunhoeber PS, Smith MH, Williams RR, Sugarman MC, Free HL, Tast DE. Immunohistochemical analysis of the monoclonal antibody 4B5 in breast tissue expressing human epidermal growth factor receptor 4 (HER4). Histopathology 2013; 62:563-77. [PMID: 23432624 DOI: 10.1111/his.12024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
AIMS A recent study examining the specificity of human epidermal growth factor receptor (HER) 2 pharmacodiagnostic antibodies demonstrated that CB11 and 4B5 stain both HER2-transfected and HER4-transfected cell lines. However, there has been no evidence showing that 4B5 has affinity for HER4 in clinically obtained tissues, and, if so, whether this has any impact on the assessment of HER2. We therefore sought to determine the expression of membrane-bound HER4 in clinical breast carcinomas, and evaluate its impact on the clinical utility of 4B5 in determining HER2 status. METHODS AND RESULTS Breast carcinomas were assessed by immunohistochemistry (IHC) for membrane-bound HER4 using anti-HER4 clone E200. HER2 expression in these cases was then assessed using anti-HER2 clone 4B5, and a reference clone, SP3. In all 117 membrane HER4-positive cases (out of 241), 4B5 scored equal to or less than the reference anti-HER2 clone SP3. Eighteen cases were positive for membrane-bound HER4 by E200 and negative by 4B5, including a membrane HER4 level 3+ case. CONCLUSIONS No cross-reactivity of 4B5 with membrane-bound HER4 was identified in the clinical IHC analysis of formalin-fixed paraffin-embedded breast carcinoma cases as evidenced by the HER4 antibody clone E200.
Collapse
Affiliation(s)
- Julie I Jay
- Ventana Medical Systems Inc., Tucson, AZ 85755, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Pillai V, Cibas ES, Dorfman DM. A simplified flow cytometric immunophenotyping procedure for the diagnosis of effusions caused by epithelial malignancies. Am J Clin Pathol 2013; 139:672-81. [PMID: 23596119 DOI: 10.1309/ajcp4hifshmo9wtk] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Epithelial malignancies frequently metastasize to the serous cavities and result in symptomatic effusions. Cytology has high specificity but moderate sensitivity for the diagnosis of a malignant effusion. We developed and validated a simple, rapid, 3-color flow cytometric panel using the adhesion molecule Ber-EP4 to detect epithelial cells in effusions. One hundred ninety-five consecutive benign and malignant effusions received for routine cytologic examination were analyzed. Eighty-three fluid specimens were benign and 76 were malignant as judged by follow-up data. Ber-EP4-positive cells were detected with flow cytometry in 89.3% of malignant effusions. The sensitivity and specificity of flow cytometry was 88.15% and 97.64% compared with 73.68% and 100% on cytologic examination alone for the presence of a malignant effusion. Flow cytometry is a useful adjunct to cytology for the diagnosis of a malignant effusion and is particularly useful if the cytologic diagnosis is atypical/suspicious or if the cytologic preparations are hypocellular or hemorrhagic.
Collapse
Affiliation(s)
- Vinodh Pillai
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Edmund S. Cibas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - David M. Dorfman
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|