1
|
Naik RR, Rajan A, Kalita N. Automated image analysis method to detect and quantify fat cell infiltration in hematoxylin and eosin stained human pancreas histology images. BBA ADVANCES 2023; 3:100084. [PMID: 37082253 PMCID: PMC10074932 DOI: 10.1016/j.bbadva.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Fatty infiltration in pancreas leading to steatosis is a major risk factor in pancreas transplantation. Hematoxylin and eosin (H and E) is one of the common histological staining techniques that provides information on the tissue cytoarchitecture. Adipose (fat) cells accumulation in pancreas has been shown to impact beta cell survival, its endocrine function and pancreatic steatosis and can cause non-alcoholic fatty pancreas disease (NAFPD). The current automated tools (E.g. Adiposoft) available for fat analysis are suited for white fat tissue which is homogeneous and easier to segment unlike heterogeneous tissues such as pancreas where fat cells continue to play critical physiopathological functions. The currently, available pancreas segmentation tool focuses on endocrine islet segmentation based on cell nuclei detection for diagnosis of pancreatic cancer. In the current study, we present a fat quantifying tool, Fatquant, which identifies fat cells in heterogeneous H and E tissue sections with reference to diameter of fat cell. Using histological images from a public database, we observed an intersection over union of 0.797 to 0.962 and 0.675 to 0.937 for manual versus Fatquant analysis of pancreas and liver, respectively.
Collapse
Affiliation(s)
- Roshan Ratnakar Naik
- Department of Biotechnology, Parvatibai Chowgule College of Arts & Science, Margao-Goa, 403601
- Corresponding author.
| | - Annie Rajan
- Department of Computer Science, Dhempe College of Arts and Science, Miramar, Panaji-Goa, 403 001
| | | |
Collapse
|
2
|
Cottle L, Gilroy I, Deng K, Loudovaris T, Thomas HE, Gill AJ, Samra JS, Kebede MA, Kim J, Thorn P. Machine Learning Algorithms, Applied to Intact Islets of Langerhans, Demonstrate Significantly Enhanced Insulin Staining at the Capillary Interface of Human Pancreatic β Cells. Metabolites 2021; 11:metabo11060363. [PMID: 34200432 PMCID: PMC8229564 DOI: 10.3390/metabo11060363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cells secrete the hormone insulin into the bloodstream and are critical in the control of blood glucose concentrations. β cells are clustered in the micro-organs of the islets of Langerhans, which have a rich capillary network. Recent work has highlighted the intimate spatial connections between β cells and these capillaries, which lead to the targeting of insulin secretion to the region where the β cells contact the capillary basement membrane. In addition, β cells orientate with respect to the capillary contact point and many proteins are differentially distributed at the capillary interface compared with the rest of the cell. Here, we set out to develop an automated image analysis approach to identify individual β cells within intact islets and to determine if the distribution of insulin across the cells was polarised. Our results show that a U-Net machine learning algorithm correctly identified β cells and their orientation with respect to the capillaries. Using this information, we then quantified insulin distribution across the β cells to show enrichment at the capillary interface. We conclude that machine learning is a useful analytical tool to interrogate large image datasets and analyse sub-cellular organisation.
Collapse
Affiliation(s)
- Louise Cottle
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown 2006, Australia
| | - Ian Gilroy
- School of Computer Science, University of Sydney, Camperdown 2006, Australia
| | - Kylie Deng
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown 2006, Australia
| | | | - Helen E Thomas
- St Vincent's Institute, Fitzroy 3065, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy 3065, Australia
| | - Anthony J Gill
- Northern Clinical School, University of Sydney, St Leonards 2065, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards 2065, Australia
| | - Jaswinder S Samra
- Northern Clinical School, University of Sydney, St Leonards 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St Leonards 2065, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown 2006, Australia
| | - Jinman Kim
- School of Computer Science, University of Sydney, Camperdown 2006, Australia
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
3
|
Raub CB, Nehmetallah G. Holography, machine learning, and cancer cells. Cytometry A 2017; 91:754-756. [PMID: 28437602 DOI: 10.1002/cyto.a.23112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/25/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Christopher B Raub
- Department of Biomedical Engineering, the Catholic University of America, Washington, DC 20064.,Department of Electrical Engineering and Computer Science, the Catholic University of America, Washington, DC 20064
| | - George Nehmetallah
- Department of Biomedical Engineering, the Catholic University of America, Washington, DC 20064.,Department of Electrical Engineering and Computer Science, the Catholic University of America, Washington, DC 20064
| |
Collapse
|