1
|
Wu Q, Li L, Zhang Y, Ming X, Feng N. Measurement methods, influencing factors and applications of intercellular receptor-ligand binding kinetics in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:43-54. [PMID: 39491758 DOI: 10.1016/j.pbiomolbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Receptor-ligand binding on contacting cells dictates the extent of transmembrane signaling through membrane receptors during cell communication, influencing both the physiological and pathological activities of cells. This process is integral to fundamental biological mechanisms including signal transduction, cancer metastasis, immune responses, and inflammatory cascades, all of which are profoundly influenced by the cell microenvironment. This article provides an overview of the kinetic theory of receptor-ligand binding and examines methods for measuring this interaction, along with their respective advantages and disadvantages. Furthermore, it comprehensively explores the factors that impact receptor-ligand binding, encompassing protein-membrane interactions, the bioelectric microenvironment, auxiliary factors, hydrogen bond strength, pH levels, cis and trans interactions between ligands and receptors. The application of receptor-ligand binding kinetics in various diseases such as immunity, cancer, and inflammation are also discussed. Additionally, the investigation into how functional substances alter receptor-ligand binding dynamics within specific cellular microenvironments presents a promising new approach to treating related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Liangchao Li
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Yuyan Zhang
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Xiaozhi Ming
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Nianjie Feng
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
2
|
Medina-Ruíz GI, Medina-Ruiz AI, Morán J. Fraping: A computational tool for detecting slight differences in fluorescence recovery after photobleaching (FRAP) data for actin polymerization analysis. Microsc Res Tech 2024; 87:1541-1551. [PMID: 38425281 DOI: 10.1002/jemt.24533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a laser method of light microscopy to evaluate the rapid movement of fluorescent molecules. To have a more reliable approach to analyze data from FRAP, we designed Fraping, a free access R library to data analysis obtained from FRAP. Unlike other programs, Fraping has a new form of analyzing curves of FRAP using statistical analysis based on the average curve difference. To evaluate our library, we analyzed the differences of actin polymerization in real time between dendrites and secondary neurites of cultured neuron transfected with LifeAct to track F-actin changes of neurites. We found that Fraping provided greater sensitivity than the conventional model using mobile fraction analysis. Likewise, this approach allowed us to normalize the fluorescence to the size area of interest and adjust data curves choosing the best parametric model. In addition, this library was supplemented with data simulation to have a more significant enrichment for the analysis behavior. We concluded that Fraping is a method that reduces bias when analyzing two data groups as compared with the conventional methods. This method also allows the users to choose a more suitable analysis approach according to their requirements. RESEARCH HIGHLIGHTS: Fraping is a new programming tool to analyze FRAP data to normalize fluorescence recovery curves. The conventional method uses one-point analysis, and the new one compares all the points to define the similarity of the fluorescence recovery.
Collapse
Affiliation(s)
- Gabriela Itzetl Medina-Ruíz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Mexico City, Mexico
| | | | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Zou W, Liu K, Gao X, Yu C, Wang X, Shi J, Chao Y, Yu Q, Zhou G, Ge L. Diurnal variation of transitory starch metabolism is regulated by plastid proteins WXR1/WXR3 in Arabidopsis young seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3074-3090. [PMID: 33571997 DOI: 10.1093/jxb/erab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Transitory starch is the portion of starch that is synthesized during the day in the chloroplast and usually used for plant growth overnight. Here, we report altered metabolism of transitory starch in the wxr1/wxr3 (weak auxin response 1/3) mutants of Arabidopsis. WXR1/WXR3 were previously reported to regulate root growth of young seedlings and affect the auxin response mediated by auxin polar transport in Arabidopsis. In this study the wxr1/wxr3 mutants accumulated transitory starch in cotyledon, young leaf, and hypocotyl at the end of night. WXR1/WXR3 expression showed diurnal variation. Grafting experiments indicated that the WXRs in root were necessary for proper starch metabolism and plant growth. We also found that photosynthesis was inhibited and the transcription level of DIN1/DIN6 (Dark-Inducible 1/6) was reduced in wxr1/wxr3. The mutants also showed a defect in the ionic equilibrium of Na+ and K+, consistent with our bioinformatics data that genes related to ionic equilibrium were misregulated in wxr1. Loss of function of WXR1 also resulted in abnormal trafficking of membrane lipids and proteins. This study reveals that the plastid proteins WXR1/WXR3 play important roles in promoting transitory starch degradation for plant growth over night, possibly through regulating ionic equilibrium in the root.
Collapse
Affiliation(s)
- Wenjiao Zou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Kui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xueping Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Changjiang Yu
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junjie Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanru Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Gongke Zhou
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Characterization of soluble CD39 (SolCD39/NTPDase1) from PiggyBac nonviral system as a tool to control the nucleotides level. Biochem J 2019; 476:1637-1651. [PMID: 31085558 DOI: 10.1042/bcj20190040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022]
Abstract
Extracellular ATP (eATP) and its metabolites have emerged as key modulators of different diseases and comprise a complex pathway called purinergic signaling. An increased number of tools have been developed to study the role of nucleotides and nucleosides in cell proliferation and migration, influence on the immune system and tumor progression. These tools include receptor agonists/antagonists, engineered ectonucleotidases, interference RNAs and ectonucleotidase inhibitors that allow the control and quantification of nucleotide levels. NTPDase1 (also called apyrase, ecto-ATPase and CD39) is one of the main enzymes responsible for the hydrolysis of eATP, and purified enzymes, such as apyrase purified from potato, or engineered as soluble CD39 (SolCD39), have been widely used in in vitro and in vivo experiments. However, the commercial apyrase had its effects recently questioned and SolCD39 exhibits limitations, such as short half-life and need of high doses to reach the expected enzymatic activity. Therefore, this study investigated a non-viral method to improve the overexpression of SolCD39 and evaluated its impact on other enzymes of the purinergic system. Our data demonstrated that PiggyBac transposon system proved to be a fast and efficient method to generate cells stably expressing SolCD39, producing high amounts of the enzyme from a limited number of cells and with high hydrolytic activity. In addition, the soluble form of NTPDase1/CD39 did not alter the expression or catalytic activity of other enzymes from the purinergic system. Altogether, these findings set the groundwork for prospective studies on the function and therapeutic role of eATP and its metabolites in physiological and pathological conditions.
Collapse
|
5
|
Moslehi M, Ng DC, Bogoyevitch MA. Pathogenic E2K mutation of doublecortin X (DCX) alters microtubule stabilisation and actin filament association. Biochem Biophys Res Commun 2019; 513:540-545. [DOI: 10.1016/j.bbrc.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|