1
|
Weber H, Hettema JM, Deckert J, Erhardt-Lehmann A. Genomics of Anxiety Disorders. Psychiatr Clin North Am 2025; 48:377-401. [PMID: 40348424 DOI: 10.1016/j.psc.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Anxiety disorders are the most prevalent psychiatric conditions in the general population. Despite the early observation of family aggregation of anxiety disorders with a heritability of 30% to 50%, their exact genetic structure is not yet determined. Evidence suggests a composition of common and rare genetic factors contributing to the etiology of anxiety disorders. Recent hypothesis-free genome-wide association studies in mega cohorts mostly with a broad anxiety phenotype rendered an increasing number of novel genetic loci. Epigenetic research is still in its infancy with first evidence showing dynamic changes in response to environmental influences and during the therapy course.
Collapse
Affiliation(s)
- Heike Weber
- Functional Genomics, Department of Psychiatry, Center of Mental Health, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margerete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University Health Sciences Center, 2900 East 29th Street, Suite 300, Bryan, TX 77802, USA
| | - Jürgen Deckert
- Center of Mental Health, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margerete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Angelika Erhardt-Lehmann
- Department of Psychiatry, Center of Mental Health, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margerete-Höppel-Platz 1, 97080 Würzburg, Germany; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Margerete-Höppel-Platz 1, 97080 Würzburg, Germany.
| |
Collapse
|
2
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Pan C, Cheng S, Liu L, Chen Y, Meng P, Yang X, Li C, Zhang J, Zhang Z, Zhang H, Cheng B, Wen Y, Jia Y, Zhang F. Identification of novel rare variants for anxiety: an exome-wide association study in the UK Biobank. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110928. [PMID: 38154517 DOI: 10.1016/j.pnpbp.2023.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Rare variants are believed to play a substantial role in the genetic architecture of mental disorders, particularly in coding regions. However, limited evidence supports the impact of rare variants on anxiety. METHODS Using whole-exome sequencing data from 200,643 participants in the UK Biobank, we investigated the contribution of rare variants to anxiety. Firstly, we computed genetic risk score (GRS) of anxiety utilizing genotype data and summary data from a genome-wide association study (GWAS) on anxiety disorder. Subsequently, we identified individuals within the lowest 50% GRS, a subgroup more likely to carry pathogenic rare variants. Within this subgroup, we classified individuals with the highest 10% 7-item Generalized Anxiety Disorder scale (GAD-7) score as cases (N = 1869), and those with the lowest 10% GAD-7 score were designated as controls (N = 1869). Finally, we conducted gene-based burden tests and single-variant association analyses to assess the relationship between rare variants and anxiety. RESULTS Totally, 47,800 variants with MAF ≤0.01 were annotated as non-benign coding variants, consisting of 42,698 nonsynonymous SNVs, 489 nonframeshift substitution, 236 frameshift substitution, 617 stop-gain and 40 stop-loss variants. After variation aggregation, 5066 genes were included in gene-based association analysis. Totally, 11 candidate genes were detected in burden test, such as RNF123 (PBonferroni adjusted = 3.40 × 10-6), MOAP1(PBonferroni adjusted = 4.35 × 10-4), CCDC110 (PBonferroni adjusted = 5.83 × 10-4). Single-variant test detected 9 rare variants, such as rs35726701(RNF123)(PBonferroni adjusted = 3.16 × 10-10) and rs16942615(CAMTA2) (PBonferroni adjusted = 4.04 × 10-4). Notably, RNF123, CCDC110, DNAH2, and CSKMT gene were identified in both tests. CONCLUSIONS Our study identified novel candidate genes for anxiety in protein-coding regions, revealing the contribution of rare variants to anxiety.
Collapse
Affiliation(s)
- Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
4
|
Fernandez TV, Williams ZP, Kline T, Rajendran S, Augustine F, Wright N, Sullivan CAW, Olfson E, Abdallah SB, Liu W, Hoffman EJ, Gupta AR, Singer HS. Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene. PLoS One 2023; 18:e0291978. [PMID: 37788244 PMCID: PMC10547198 DOI: 10.1371/journal.pone.0291978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023] Open
Abstract
Motor stereotypies are common in children with autism spectrum disorder (ASD), intellectual disability, or sensory deprivation, as well as in typically developing children ("primary" stereotypies, pCMS). The precise pathophysiological mechanism for motor stereotypies is unknown, although genetic etiologies have been suggested. In this study, we perform whole-exome DNA sequencing in 129 parent-child trios with pCMS and 853 control trios (118 cases and 750 controls after quality control). We report an increased rate of de novo predicted-damaging DNA coding variants in pCMS versus controls, identifying KDM5B as a high-confidence risk gene and estimating 184 genes conferring risk. Genes harboring de novo damaging variants in pCMS probands show significant overlap with those in Tourette syndrome, ASD, and those in ASD probands with high versus low stereotypy scores. An exploratory analysis of these pCMS gene expression patterns finds clustering within the cortex and striatum during early mid-fetal development. Exploratory gene ontology and network analyses highlight functional convergence in calcium ion transport, demethylation, cell signaling, cell cycle and development. Continued sequencing of pCMS trios will identify additional risk genes and provide greater insights into biological mechanisms of stereotypies across diagnostic boundaries.
Collapse
Affiliation(s)
- Thomas V. Fernandez
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States America
| | - Zsanett P. Williams
- Department of Psychiatry, Vanderbilt University School of Nursing, Nashville, TN, United States America
| | - Tina Kline
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Shreenath Rajendran
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Farhan Augustine
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Nicole Wright
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Catherine A. W. Sullivan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Emily Olfson
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Sarah B. Abdallah
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Wenzhong Liu
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Ellen J. Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Abha R. Gupta
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Harvey S. Singer
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| |
Collapse
|
5
|
Lebowitz ER, Marin CE, Orbach M, Salmaso N, Vaccarino FM, Silverman WK. Maternal FGF2 levels associated with child anxiety and depression symptoms through child FGF2 levels. J Affect Disord 2023; 326:193-197. [PMID: 36717031 PMCID: PMC10104478 DOI: 10.1016/j.jad.2023.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Recent research implicates fibroblast growth factor 2 (FGF2) in anxiety and depressive symptoms of childhood. This study is the first to examine an intergenerational pathway linking FGF2 levels in mothers to FGF2 levels in children, and to the children's anxiety and depressive symptoms. METHODS We assayed serum FGF2 in 259 mothers and their children, with a range of anxiety and depressive symptoms: 194 were mothers of clinic-referred anxious and depressed children; 65 were mothers of non-referred children. We examined associations between FGF2 levels in mothers and children, and anxiety and depression symptoms. We used structural equation modeling (SEM) to examine associations between maternal and child FGF2 levels, and between maternal and child FGF2 levels and symptoms of anxiety and depression in and children. RESULTS FGF2 levels in mothers and children were significantly positively correlated. Children's FGF2 levels were significantly negatively correlated with their ratings of anxiety and depression. Results of the SEM model showed that increases in maternal FGF2 levels were significantly associated with increases in child FGF2, which in turn was associated with decreases in child anxiety and child depression, controlling for maternal anxiety and depression. LIMITATIONS We relied on self-reported ratings of anxiety and depression, and on a single measurement of FGF2 levels for each participant. CONCLUSIONS Our results point to a role for FGF2 in the intergenerational transmission of risk for, and resilience to, anxiety and depression in youth.
Collapse
Affiliation(s)
- Eli R Lebowitz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Anxiety and Mood Disorders Program, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Carla E Marin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Anxiety and Mood Disorders Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Meital Orbach
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Anxiety and Mood Disorders Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Flora M Vaccarino
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06510, USA
| | - Wendy K Silverman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Anxiety and Mood Disorders Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|