1
|
Klahn P. How Should we Teach Medicinal Chemistry in Higher Education to Prepare Students for a Future Career as Medicinal Chemists and Drug Designers? - A Teacher's Perspective. ChemMedChem 2025; 20:e202400791. [PMID: 39564941 PMCID: PMC11733470 DOI: 10.1002/cmdc.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 11/21/2024]
Abstract
In the recent two decades, the multidisciplinary field of medicinal chemistry has undergone several conceptual and technology-driven paradigm changes with significant impact on the skill set medicinal chemists need to acquire during their education. Considering the need for academic medicinal chemistry teaching, this article aims at identifying important skills, competences, and basic knowledge as general learning outcomes based on an analysis of the relevant stakeholders and concludes effective teaching strategies preparing students for a future career as medicinal chemists and drug designers.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemistry and Molecular BiologyDivision of Organic and Medicinal ChemistryUniversity of GothenburgMedicinaregatan 7B, NatriumGöteborg413 90Sweden
| |
Collapse
|
2
|
Identifying the Characteristics of Virtual Reality Gamification for Complex Educational Topics. MULTIMODAL TECHNOLOGIES AND INTERACTION 2021. [DOI: 10.3390/mti5090053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidisciplinary topics in education pose a major challenge for traditional learning and teaching methods. Such topics can deter students from selecting particular courses or hinder their study progress. This study focused on the subject of medicinal chemistry, which is a discipline combining medicine and chemistry. This combination of applied and basic science creates a complex field of education that is challenging to both teach and learn. Chemical and pharmacological principles are typically presented in 2D molecular structures and, recently, 3D molecular models have been utilized to improve the visualization of chemical compounds and their chemical interactions. Contemporary studies have presented Virtual Reality (VR) as an alternative method for improving the learning and teaching of multidisciplinary specialties such as this. However, current educational efforts employing VR offer limited interactivity and a traditional teaching method previously presented in 2D. This reduces students’ interest and concentration in the taught subjects. This paper presents the development rationale of a novel VR educational application based on the evaluation of the user requirements by 405 pharmacy undergraduate students. The results informed the development and preliminary evaluation of a proposed VR serious game application, which was deployed in a real-life class environment and evaluated in contrast to traditional teaching methods by 15 students. The derived results confirmed the advantages of VR technology as a learning and teaching tool, in addition to the end-users’ willingness to adopt VR systems as a learning aid.
Collapse
|
3
|
“MedChemVR”: A Virtual Reality Game to Enhance Medicinal Chemistry Education. MULTIMODAL TECHNOLOGIES AND INTERACTION 2021. [DOI: 10.3390/mti5030010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Medicinal chemistry (MC) is an indispensable component of the pharmacy curriculum. The pharmacists’ unique knowledge of a medicine’s chemistry enhances their understanding of the pharmacological activity, manufacturing, storage, use, supply, and handling of drugs. However, chemistry is a challenging subject for both teaching and learning. These challenges are typically caused by the inability of students to construct a mental image of the three-dimensional (3D) structure of a drug molecule from its two-dimensional presentations. This study explores a prototype virtual reality (VR) gamification option, as an educational tool developed to aid the learning process and to improve the delivery of the MC subject to students. The developed system is evaluated by a cohort of 41 students. The analysis of the results was encouraging and provided invaluable feedback for the future development of the proposed system.
Collapse
|
4
|
Al-Ostoot FH, Salah S, Khanum SA. Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [PMCID: PMC7849228 DOI: 10.1007/s13738-021-02172-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Medicinal chemistry can rightfully be regarded as a cornerstone in the public health of our modern society that combines chemistry and pharmacology with the aim of designing and developing new pharmaceutical compounds. For this purpose, many chemical techniques as well as new computational chemistry applications are used to study the utilization of drugs and their biological effects. In the biological interface, medicinal chemistry constitutes a group of interdisciplinary sciences, as well as controlling its organic, physical and computational pillars. Therefore, medicinal chemists working to design an integrated and developing system that portends an era of novel and safe tailored drugs either by synthesizing new pharmaceuticals or to improving the processes by which existing pharmaceuticals are made. It includes researching the effects of synthetic, semi-synthetic and natural biologically active substances based on molecular interactions in terms of molecular structure with triggered functional groups or the specific physicochemical properties. The present work focuses on the literature survey of chemical diversity of phenoxy acetamide and its derivatives (Chalcone, Indole and Quinoline) in the molecular framework in order to get complete information regarding pharmacologically interesting compounds of widely different composition. From a biological and industrial point of view, this literature review may provide an opportunity for the chemists to design new derivatives of phenoxy acetamide and its derivatives that proved to be the successful agent in view of safety and efficacy to enhance life quality.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru, 570 006 India
- Department of Biochemistry, Faculty of Education and Science, Al-Baydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru, 570 006 India
| |
Collapse
|
5
|
Affiliation(s)
- Michael F. Rafferty
- Department of Medicinal Chemistry, University of Kansas, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Nussbaumer P. Medicinal Chemists of the 21stCentury-Who Are We and Where to Go? ChemMedChem 2015; 10:1133-9. [DOI: 10.1002/cmdc.201500133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 12/11/2022]
|
7
|
Kutchukian PS, Vasilyeva NY, Xu J, Lindvall MK, Dillon MP, Glick M, Coley JD, Brooijmans N. Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery. PLoS One 2012. [PMID: 23185259 PMCID: PMC3504051 DOI: 10.1371/journal.pone.0048476] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Medicinal chemists' "intuition" is critical for success in modern drug discovery. Early in the discovery process, chemists select a subset of compounds for further research, often from many viable candidates. These decisions determine the success of a discovery campaign, and ultimately what kind of drugs are developed and marketed to the public. Surprisingly little is known about the cognitive aspects of chemists' decision-making when they prioritize compounds. We investigate 1) how and to what extent chemists simplify the problem of identifying promising compounds, 2) whether chemists agree with each other about the criteria used for such decisions, and 3) how accurately chemists report the criteria they use for these decisions. Chemists were surveyed and asked to select chemical fragments that they would be willing to develop into a lead compound from a set of ~4,000 available fragments. Based on each chemist's selections, computational classifiers were built to model each chemist's selection strategy. Results suggest that chemists greatly simplified the problem, typically using only 1-2 of many possible parameters when making their selections. Although chemists tended to use the same parameters to select compounds, differing value preferences for these parameters led to an overall lack of consensus in compound selections. Moreover, what little agreement there was among the chemists was largely in what fragments were undesirable. Furthermore, chemists were often unaware of the parameters (such as compound size) which were statistically significant in their selections, and overestimated the number of parameters they employed. A critical evaluation of the problem space faced by medicinal chemists and cognitive models of categorization were especially useful in understanding the low consensus between chemists.
Collapse
Affiliation(s)
- Peter S. Kutchukian
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Nadya Y. Vasilyeva
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jordan Xu
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Mika K. Lindvall
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Michael P. Dillon
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Meir Glick
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - John D. Coley
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail: (JDC); (NB)
| | - Natasja Brooijmans
- Blueprint Medicines, Cambridge, Massachusetts, United States of America
- * E-mail: (JDC); (NB)
| |
Collapse
|
8
|
Abstract
Rapid advances in our collective understanding of biomolecular structure and, in concert, of biochemical systems, coupled with developments in computational methods, have massively impacted the field of medicinal chemistry over the past two decades, with even greater changes appearing on the horizon. In this perspective, we endeavor to profile some of the most prominent determinants of change and speculate as to further evolution that may consequently occur during the next decade. The five main angles to be addressed are: protein-protein interactions; peptides and peptidomimetics; molecular diversity and pharmacological space; molecular pharmacodynamics (significance, potential and challenges); and early-stage clinical efficacy and safety. We then consider, in light of these, the future of medicinal chemistry and the educational preparation that will be required for future medicinal chemists.
Collapse
Affiliation(s)
- Seetharama D Satyanarayanajois
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe LA 71201, USA.
| | | |
Collapse
|
9
|
Timmerman H, de Souza NJ. Medicinal chemistry teaching and training: a continuous adaptation. ChemMedChem 2009; 4:1055-8. [PMID: 19425038 DOI: 10.1002/cmdc.200900128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bridging the gap: The differences between medicinal chemistry at the industrial and academic levels raises the question: Is there a significant gap between the two spheres that requires attention, or should such differences be deemed natural, without the need to close the gap? Herein we provide perspectives on this issue, based in part on opinions expressed at a forum discussion held at ISMC 2008 in Vienna.
Collapse
Affiliation(s)
- Henk Timmerman
- Prof. Em. VU University Amsterdam, Wijttenbachweg 73, 2343XX Oegstgeest, The Netherlands.
| | | |
Collapse
|
10
|
Triggle DJ. Drug discovery and delivery in the 21st century. Med Princ Pract 2007; 16:1-14. [PMID: 17159357 DOI: 10.1159/000096133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Accepted: 05/28/2006] [Indexed: 02/05/2023] Open
Abstract
Drug discovery in the late 20th century has increasingly focused on the definition and characterization of the macromolecular substrates that serve as targets for drug design. The advent of genomics and the molecular biology revolution has permitted both the definition of new targets and the characterization of the genetic basis of disease states. The introduction of powerful new technologies should greatly accelerate the pace of new drug discovery. Although genomics, both human and nonhuman, should in principle increase the number of potential drug targets and provide a greater understanding of cellular events contributing to the pathology of disease this has yet to occur in practice, primarily because of the underlying complexity of cellular signaling processes. The emerging discipline of systems biology is attempting to bring both order and understanding to these signaling processes. Genomics has, however, impacted on drug discovery in ways that are important beyond a mere increase in potential drug target numbers. Genomics has provided the tools of contemporary drug discovery, the pharmacogenomic pathways to personalized medicine, and has greatly influenced the nature of synthetic organic chemistry, a discipline that is still the cornerstone of contemporary drug discovery. In the future, genomics and the tools of molecular biology will have a corresponding impact on drug delivery processes and mechanisms through introduction of drug delivery machines capable of both synthesis and activation by disease-specific signals. Such machines will be based on a synthetic genome, using an expanded genetic code, and designed for specific drug synthesis and delivery and activation by a pathological signal. This essay is based upon a lecture of the same title presented at the Faculty of Medicine, Kuwait University during a visit in the spring of 2005. It is intended, as was the lecture, to be a broad, descriptive and speculative overview rather than a comprehensive and detailed review.
Collapse
|