1
|
Amin N, Du X, Chen S, Ren Q, Hussien AB, Botchway BOA, Hu Z, Fang M. Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway. Expert Opin Ther Targets 2021; 25:597-612. [PMID: 34236288 DOI: 10.1080/14728222.2021.1952986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Reactive oxygen species (ROS)-mediated inflammation plays a crucial role in ischemic brain injury. Therefore, the activation of the nuclear erythroid 2 related protein and heme-oxygenase-1 (Nrf2/HO-1) pathway by thymoquinone (TQ) could ameliorate ischemic brain damage.Areas covered: The photo-thrombotic method was employed to assess the impact of TQ in attenuating ischemic brain damage in C57BL/6 J mice and thy1-YFP-16 transgenic mice. In vitro study of TQ efficiency to attenuate the oxygen-glucose deprivation/reoxygenation (OGD/R) induced cell death by fluorescence-activated cell sorting (FACs) analysis was also analyzed. The protein expression levels of Nrf2/HO-1, inflammatory, and apoptotic were evaluated by immunofluorescence and western blot techniques. Besides, mRNA expression level of inducible nitric oxide synthase (iNOS), proto-oncogene (c-MYC), proto-oncogene (c-FOS), 5-hydroxytryptamine receptors (5-HT), and autophagy-related 5 (Atg5) were evaluated by RT-qPCR. The dendritic spine density of YFP slices was determined by confocal microscope.Results: Our in vivo and in vitro results indicated that TQ significantly mitigates brain damage and motor dysfunction after ischemic stroke. These observations coincided with curtailed cell death, inflammation, oxidative stress, apoptosis, and autophagy. Most importantly, Nrf2/HO-1 signaling pathway activation by TQ was vital in the modulation of the above processes. Lastly, we found TQ to have minimal toxicity in liver tissue.Conclusion: Our study gives credence to TQ as a promising intervention therapy for cerebral ischemia that decreases inflammation, oxidative stress, and neuronal cell death via the Nrf2/HO-1 pathway, along with modulation of apoptotic and autophagic processes.
Collapse
Affiliation(s)
- Nashwa Amin
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxue Du
- Translational Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang, China
| | - Shijia Chen
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiannan Ren
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Azhar B Hussien
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Marong Fang
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Foster CG, Landowski LM, Sutherland BA, Howells DW. Differences in fatigue-like behavior in the lipopolysaccharide and poly I:C inflammatory animal models. Physiol Behav 2021; 232:113347. [PMID: 33529685 DOI: 10.1016/j.physbeh.2021.113347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Central fatigue is a condition associated with impairment of the central nervous system often leading to the manifestation of a range of debilitating symptoms. Fatigue can be a consequence of systemic inflammation following an infection. Administration of lipopolysaccharide (LPS) and polyriboinosinic:polyribocytidlic (poly I:C) to animals can induce systemic inflammation by mimicking a bacterial or viral infection respectively and therefore have been used as models of fatigue. We evaluated a range of phenotypic behaviors exhibited in the LPS and poly I:C animal models to assess whether they adequately replicate fatigue symptomology in humans. In addition to standard observation- and intervention-based behavioral assessments, we used powerful in-cage monitoring technology to quantify rodent behavior without external interference. LPS and poly I:C treated Sprague Dawley rats displayed 'sickness behaviors' of elevated temperature, weight loss and reduced activity in the open field test and with in-cage monitoring within 24 h post-treatment, but only LPS-treated rats displayed these behaviors beyond these acute timepoints. Once sickness behavior diminished, LPS-treated rats exhibited an increase in reward-seeking and motivation behaviors. Overall, these results suggest that the LPS animal model produces an extensive and sustained fatigue-like phenotype, whereas the poly I:C model only produced acute effects. Our results suggest that the LPS animal model is a more suitable candidate for further studies on central fatigue-like behavior.
Collapse
Affiliation(s)
- Catherine G Foster
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Lila M Landowski
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
3
|
Ekimova IV, Plaksina DV, Pastukhov YF, Lapshina KV, Lazarev VF, Mikhaylova ER, Polonik SG, Pani B, Margulis BA, Guzhova IV, Nudler E. New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson's disease. Exp Neurol 2018; 306:199-208. [PMID: 29704482 DOI: 10.1016/j.expneurol.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/17/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
Abstract
Molecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals. Conversely, pharmacological activation of HSF1 transcription factor and enhanced expression of inducible HSP70 with the echinochrome derivative, U-133, reverses the process of neurodegeneration, as evidenced by а increase in the number of tyrosine hydroxylase-containing neurons, and prevents the motor disturbances that are typical of the clinical stage of the disease. The neuroprotective effect caused by the elevation of HSP70 in nigral neurons is due to the ability of the chaperone to prevent α-synuclein aggregation and microglia activation. Our findings support the therapeutic relevance of HSP70 induction for the prevention and/or deceleration of PD-like neurodegeneration.
Collapse
Affiliation(s)
- Irina V Ekimova
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia.
| | - Daria V Plaksina
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Yuri F Pastukhov
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Ksenia V Lapshina
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Vladimir F Lazarev
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Elena R Mikhaylova
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Sergey G Polonik
- G.B.Elyakov Pacific Institute of Bioorganic Chemistry of Far East Branch of Russian Academy of Sciences, pr. 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine NY, NY 10016, USA
| | - Boris A Margulis
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine NY, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine NY, NY 10016, USA.
| |
Collapse
|
5
|
Ekimova IV, Simonova VV, Guzeev MA, Lapshina KV, Chernyshev MV, Pastukhov YF. Changes in sleep characteristics of rat preclinical model of Parkinson’s disease based on attenuation of the ubiquitin—proteasome system activity in the brain. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567816060057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|