1
|
Wang X, Zhao J, Wang D, Deng L, Lu Z. Iron-catalyzed sequential hydrosilylation. Nat Commun 2025; 16:4338. [PMID: 40346082 PMCID: PMC12064691 DOI: 10.1038/s41467-025-59364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
Highly regio-, diastereo- and enantioselective iron-catalyzed sequential hydrosilylation of o-alk-n-enyl-phenyl silanes with alkynes is reported for various 5-, 6-, and 7-membered benzosilacycles in 60-94% yields with up to 95:5 rr, 95:5 dr, and 99% ee. Chiral fully carbon-substituted silicon-stereogenic benzosilacycles could also be obtained via triple hydrosilylation reactions. The unique electronic effect of ligands is observed while adjusting the regioselectivity and enantioselectivity in hydrosilylation reactions. A possible mechanism has been proposed by variable time normalization analysis (VTNA) and H/D exchange experiment.
Collapse
Affiliation(s)
- Xue Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jiajin Zhao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Dongyang Wang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Liang Deng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Wang J, Chen Z, Chen K, Cui Z, Li J. Modular Access to Silicon-Containing Amino Acids and Peptides by Cobalt Catalysis. Angew Chem Int Ed Engl 2025; 64:e202421190. [PMID: 39715727 DOI: 10.1002/anie.202421190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
A regioselective cobalt-catalyzed three-component silylamidation that rapidly and reliably incorporates dioxazolones and silylzinc pivalates into unconjugated alkenyl amides is disclosed. Notably, the unique power of this protocol is demonstrated by the possibility of achieving peptide ligation using peptide-containing dioxazolones or alkenyl amides as the coupling partners. Moreover, this approach is distinguished by its mild condition, synthetic simplicity, and ample scope, thus providing a new platform for modular access to silicon-containing amino acid derivatives and peptides.
Collapse
Affiliation(s)
- Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zexu Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Kaixin Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zhili Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| |
Collapse
|
3
|
Ma JH, Jin CL, Couve-Bonnaire S, Bouillon JP, Xu LW. Rhodium-Catalyzed Enantioselective Hydrosilylation of 1,1-Disubstituted Enamides. Org Lett 2024; 26:10684-10689. [PMID: 39648479 DOI: 10.1021/acs.orglett.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Catalytic hydrosilylation of 1,1-disubstituted enamides is one of the most challenging and synthetically useful processes in organosilicon chemistry and asymmetric catalysis. Herein, we report a rhodium-catalyzed enantioselective hydrosilylation of α-arylenamides with substituted hydrosilanes with the aid of chiral P-ligand, including newly developed spirophosphite ligands, giving various chiral β-silylated amides in excellent yields with good to excellent enantioselectivities (98:2 er after recrystallization). In addition, chiral β-silylated amines can be obtained by further functionalization of the hydrosilylation product.
Collapse
Affiliation(s)
- Jun-Han Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Chen-Li Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Samuel Couve-Bonnaire
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | | | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
4
|
Yin T, Sui S, Li S, Chang J, Bai D. Nickel-catalyzed stereospecific reductive cross-coupling of vinyl chlorosilanes with axially chiral biaryl electrophiles. Chem Commun (Camb) 2024; 60:14204-14207. [PMID: 39530918 DOI: 10.1039/d4cc04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enantioenriched organosilanes are important chiral molecules in materials science and organic synthesis. The synthesis of axially chiral organosilanes is particularly significant in terms of applications. Herein, we report a Ni-catalyzed reductive cross-electrophile coupling of vinyl chlorosilanes with sterically hindered chiral biaryl electrophiles for the synthesis of atropisomeric biaryl organosilanes. Various enantioenriched axially chiral vinylsilanes are accessible in high efficiency under mild conditions. The synthetic transformations and applications of new chiral silicon-containing alkene ligands are demonstrated.
Collapse
Affiliation(s)
- Tiantian Yin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shiyuan Sui
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shuqi Li
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
5
|
Yan Y, Wei Q, Su Z, Hang NN, Hayashi T, Ming J. Carbon-silicon-switch effect in enantioselective construction of silicon-stereogenic center from silacyclohexadienones. Nat Commun 2024; 15:9915. [PMID: 39548103 PMCID: PMC11568255 DOI: 10.1038/s41467-024-54241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Carbon-silicon-switch strategy, replacing one specific carbon atom in organic molecules with a silicon, has garnered significant interest for developing new functional molecules. However, the influence of a reaction regarding its selectivity and reactivity by carbon-silicon-switch strategy has far less been investigated. Here we discover an unusual carbon-silicon-switch effect in the enantioselective construction of silicon-stereogenic center. It is found that there has been a significant change in the desymmetrization reaction of silacyclohexadienones using asymmetric conjugate addition or oxidative Heck reaction with aryl/alkyl nucleophiles when compared with their carbon analogues cyclohexadienones. Specifically, the carbon-silicon-switch leads to a reversal in enantioselectivity with arylzinc as the nucleophile by the same chiral catalyst, and results in totally different reactivity with arylboronic acid as the nucleophile. Control experiments and density functional theory (DFT) calculations have shown that the unusual carbon-silicon-switch effect comes from the unique stereoelectronic feature of silicon.
Collapse
Affiliation(s)
- Yu Yan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Qi Wei
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Zhishan Su
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Nan-Nan Hang
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| | - Jialin Ming
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China.
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
6
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
7
|
Lu F, Li Z, Wang Y, Liu G, Niu G, Wang G, Zhao X. Facile access to α-silylmethylamidines by BF 3-catalyzed hydroamination of silylynamides with amines. Org Biomol Chem 2024; 22:8097-8101. [PMID: 39290038 DOI: 10.1039/d4ob01314j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The metal-free BF3-catalyzed hydroamination of silylynamides with amines allows facile and efficient synthesis of α-silylmethylamidines in moderate to excellent yields (up to 99%) with a broad substrate scope and excellent functional group compatibility under mild reaction conditions. This protocol offers the first synthetic route to silyl-incorporated amidine compounds, which features the use of Lewis acid BF3 as the catalyst and easily available silylynamides as the silicon source. Considering the biological importance of amidine scaffolds and silyl groups, the easy incorporation of these two structural units should make great sense for medicinal chemistry. Notably, with this strategy, the installation of amidine scaffolds to drug-like molecules celecoxib and estrone is realized for the first time. A plausible mechanism involves the formation of vinyl-boron intermediates from BF3-activated ynamides, which after protodeboronation and tautomerization afford the desired products.
Collapse
Affiliation(s)
- Fei Lu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Zengzeng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yulu Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guoliang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guangguo Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guanghui Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Ximei Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
8
|
Ye ZT, Wu ZW, Zhang XX, Zhou J, Yu JS. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem Soc Rev 2024; 53:8546-8562. [PMID: 39091219 DOI: 10.1039/d4cs00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.
Collapse
Affiliation(s)
- Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
9
|
Navas F, Chocarro-Calvo A, Iglesias-Hernández P, Fernández-García P, Morales V, García-Martínez JM, Sanz R, De la Vieja A, García-Jiménez C, García-Muñoz RA. Promising Anticancer Prodrugs Based on Pt(IV) Complexes with Bis-organosilane Ligands in Axial Positions. J Med Chem 2024; 67:6410-6424. [PMID: 38592014 PMCID: PMC11056991 DOI: 10.1021/acs.jmedchem.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.
Collapse
Affiliation(s)
- Francisco Navas
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - Ana Chocarro-Calvo
- Department
of Basic Health Sciences. Rey Juan Carlos
University. Avda. Atenas
s/n, Alcorcón, Madrid 28922, Spain
| | - Patricia Iglesias-Hernández
- Endocrine
Tumor Unit Chronic Disease Program (UFIEC). Carlos III Health Institute. Ctra. Majadahonda a Pozuelo km 2,2. Majadahonda, Madrid 28220, Spain
| | - Paloma Fernández-García
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - Victoria Morales
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - José Manuel García-Martínez
- Department
of Basic Health Sciences. Rey Juan Carlos
University. Avda. Atenas
s/n, Alcorcón, Madrid 28922, Spain
| | - Raúl Sanz
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - Antonio De la Vieja
- Endocrine
Tumor Unit Chronic Disease Program (UFIEC). Carlos III Health Institute. Ctra. Majadahonda a Pozuelo km 2,2. Majadahonda, Madrid 28220, Spain
| | - Custodia García-Jiménez
- Department
of Basic Health Sciences. Rey Juan Carlos
University. Avda. Atenas
s/n, Alcorcón, Madrid 28922, Spain
| | - Rafael A. García-Muñoz
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| |
Collapse
|
10
|
Gan WE, Wu YS, Wu B, Fang CY, Cao J, Xu Z, Xu LW. Copper-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzoxasiloles. Angew Chem Int Ed Engl 2024; 63:e202317973. [PMID: 38179840 DOI: 10.1002/anie.202317973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A Cu-catalyzed asymmetric synthesis of silicon-stereogenic benzoxasiloles has been realized via intramolecular Si-O coupling of [2-(hydroxymethyl)phenyl]silanes. Cu(I)/difluorphos is found to be an efficient catalytic system for enantioselective Si-C bond cleavage and Si-O bond formation. In addition, kinetic resolution of racemic substituted [2-(hydroxymethyl)phenyl]silanes using Cu(I)/ PyrOx (pyridine-oxazoline ligands) as the catalytic system is developed to afford carbon- and silicon-stereogenic benzoxasiloles. Ring-opening reactions of chiral benzoxasiloles with organolithiums and Grignard reagents yield various enantioenriched functionalized tetraorganosilanes.
Collapse
Affiliation(s)
- Wan-Er Gan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yong-Shun Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Bin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chun-Yuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zheng Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, P. R. China
| |
Collapse
|
11
|
Ding C, Ren Y, Yu Y, Yin G. Ligand-modulated nickel-catalyzed regioselective silylalkylation of alkenes. Nat Commun 2023; 14:7670. [PMID: 37996492 PMCID: PMC10667358 DOI: 10.1038/s41467-023-43642-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Organosilicon compounds have shown tremendous potential in drug discovery and their synthesis stimulates wide interest. Multicomponent cross-coupling of alkenes with silicon reagents is used to yield complex silicon-containing compounds from readily accessible feedstock chemicals but the reaction with simple alkenes remains challenging. Here, we report a regioselective silylalkylation of simple alkenes, which is enabled by using a stable Ni(II) salt and an inexpensive trans-1,2-diaminocyclohexane ligand as a catalyst. Remarkably, this reaction can tolerate a broad range of olefins bearing various functional groups, including alcohol, ester, amides and ethers, thus it allows for the efficient and selective assembly of a diverse range of bifunctional organosilicon building blocks from terminal alkenes, alkyl halides and the Suginome reagent. Moreover, an expedient synthetic route toward alpha-Lipoic acid has been developed by this methodology.
Collapse
Affiliation(s)
- Chao Ding
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Yaoyu Ren
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Yue Yu
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Thorwart T, Greb L. Reversible C-H bond silylation with a neutral silicon Lewis acid. Chem Sci 2023; 14:11237-11242. [PMID: 37860638 PMCID: PMC10583699 DOI: 10.1039/d3sc03488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The silicon-carbon bond is a valuable linchpin for synthetic transformations. However, installing Si-C functionalities requires metalated C-nucleophiles, activated silicon reagents (silylium ions, silyl radicals, and silyl anions), or transition metal catalysis, and it occurs irreversibly. In contrast, spontaneous C-H silylations with neutral silanes leading to anionic silicates, and their reversible deconstruction, are elusive. Herein, the CH-bond silylation of heterocycles or a terminal alkyne is achieved by reaction with bis(perfluoro(N-phenyl-ortho-amidophenolato))silane and 1,2,2,6,6-pentamethylpiperidine. Computational and experimental insights reveal a frustrated Lewis pair (FLP) mechanism. Adding a silaphilic donor to the ammonium silicate products induces the reformation of the C-H bond, thus complementing previously known irreversible C-H bond silylation protocols. Interestingly, the FLP "activated" N-methylpyrrole exhibits "deactivated" features against electrophiles, while a catalytic functionalization is found to be effective only in the absence of a base.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 270 Heidelberg 69120 Germany
| | - Lutz Greb
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 270 Heidelberg 69120 Germany
| |
Collapse
|
13
|
Chen H, Hu X, Wang W, Gao L, Song Z. Recent Progress in the Synthesis of Silaspiranes. Chemistry 2023:e202302371. [PMID: 37739927 DOI: 10.1002/chem.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Silaspiranes bearing a spiro-silicon center are promising ring frameworks for the synthesis of novel spirocyclic molecules possessing unique properties. Development of efficient methods towards these ring structures has therefore attracted considerable attentions of synthetic chemists. This minireview highlights the representative advances in the field, and is categorized into four parts according to the ring formation strategies: cyclization, annulation, ring expansion and cycloaddition.
Collapse
Affiliation(s)
- Hua Chen
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Xuejiao Hu
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
- Key Laboratory of Organosilicon Chemistry and, Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
14
|
Fotie J, Matherne CM, Wroblewski JE. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores. Chem Biol Drug Des 2023; 102:235-254. [PMID: 37029092 DOI: 10.1111/cbdd.14239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Bioisosterism is one of the leading strategies in medicinal chemistry for the design and modification of drugs, consisting in replacing an atom or a substituent with a different atom or a group with similar chemical properties and an inherent biocompatibility. The objective of such an exercise is to produce a diversity of molecules with similar behavior while enhancing the desire biological and pharmacological properties, without inducing significant changes to the chemical framework. In drug discovery and development, the optimization of the absorption, distribution, metabolism, elimination, and toxicity (ADMETox) profile is of paramount importance. Silicon appears to be the right choice as a carbon isostere because they possess very similar intrinsic properties. However, the replacement of a carbon by a silicon atom in pharmaceuticals has proven to result in improved efficacy and selectivity, while enhancing physicochemical properties and bioavailability. The current review discusses how silicon has been strategically introduced to modulate drug-like properties of anticancer agents, from a molecular design strategy, biological activity, computational modeling, and structure-activity relationships perspectives.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Caitlyn M Matherne
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jordan E Wroblewski
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
15
|
Zhang WR, Zhang WW, Li H, Li BJ. Amide-Directed, Rhodium-Catalyzed Enantioselective Hydrosilylation of Unactivated Internal Alkenes. Org Lett 2023; 25:1667-1672. [PMID: 36892303 DOI: 10.1021/acs.orglett.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Despite the recent advances made in the area of asymmetric hydrosilylation, metal-catalyzed enantioselective hydrosilylation of unactivated internal alkenes remains a challenge. Here, we report a rhodium-catalyzed enantioselective hydrosilylation of unactivated internal alkenes bearing a polar group. The coordination assistance by an amide group enables the hydrosilylation to occur with high regio- and enantioselectivity.
Collapse
Affiliation(s)
- Wen-Ran Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.,Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Wang X, Chai GL, Hou YJ, Zhou MQ, Chang J. Enantioselective Synthesis of Chiral Organosilicon Compounds by Organocatalytic Asymmetric Conjugate Addition of Boronic Acids to β-Silyl-α,β-Unsaturated Ketones. J Org Chem 2023. [PMID: 36812405 DOI: 10.1021/acs.joc.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, we report (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-catalyzed enantioselective conjugate addition of organic boronic acids to β-silyl-α,β-unsaturated ketones, furnishing moderate to excellent yields of the corresponding β-silyl carbonyl compounds with stereogenic centers in excellent enantioselectivities (up to 98% ee). Moreover, the catalytic system features mild reaction conditions, high efficiency, broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Xiao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Jing Hou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ming-Qian Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Seri̇n S. A comprehensive DFT study on organosilicon-derived fungicide flusilazole and its germanium analogue: A computational approach to Si/Ge bioisosterism. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
18
|
Zhang XX, Gao Y, Zhang YX, Zhou J, Yu JS. Highly Enantioselective Construction of Multifunctional Silicon-Stereogenic Silacycles by Asymmetric Enamine Catalysis. Angew Chem Int Ed Engl 2023; 62:e202217724. [PMID: 36625565 DOI: 10.1002/anie.202217724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report the first highly enantioselective construction of silicon-stereocenters by asymmetric enamine catalysis. An unprecedented desymmetric intramolecular aldolization of prochiral siladials was thus developed for the facile access of multifunctional silicon-stereogenic silacycles in high to excellent enantioselectivity. With an enal moiety, these adducts could be readily elaborated for the diverse synthesis of silicon-stereogenic compounds, and for late-stage modification.
Collapse
Affiliation(s)
- Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yan-Xue Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
19
|
Zhang WW, Li BJ. Enantioselective Hydrosilylation of β,β-Disubstituted Enamides to Construct α-Aminosilanes with Vicinal Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202214534. [PMID: 36344453 DOI: 10.1002/anie.202214534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Despite the advances in the area of catalytic alkene hydrosilylation, the enantioselective hydrosilylation of alkenes bearing a heteroatom substituent is scarce. Here we report a rhodium-catalyzed hydrosilylation of β,β-disubstituted enamides to directly afford valuable α-aminosilanes in a highly regio-, diastereo-, and enantioselective manner. Stereodivergent synthesis could be achieved by regulating substrate geometry and ligand configuration to generate all the possible stereoisomers in high enantio-purity.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Yang C, Chen J, Li X, Meng L, Wang K, Sun W, Fan B. Difluoroallylation of Silanes under Photoirradiation. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Ye T, Zhao J, Zheng WX, Zhang J, Wang Z, Zhang FL. Synthesis of structurally diverse silicon-incorporated indolines via silyl radical-triggered radical cascade reactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Structurally diverse silicon-incorporated indolines were synthesized via a silyl radical-triggered radical addition–translocation–cyclization (RATC) process.
Collapse
|
22
|
Sussman D, Tassone VK, Gholamali Nezhad F, Wu M, Adamsahib F, Mattina GF, Pazmino-Canizares J, Demchenko I, Jung H, Lou W, Ladha KS, Bhat V. Local Injection for Treating Mood Disorders (LIFT-MOOD): A Pilot Feasibility RCT of Stellate Ganglion Block for Treatment-Resistant Depression. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231160315. [PMID: 36895443 PMCID: PMC9989395 DOI: 10.1177/24705470231160315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
Background With nearly one-third of patients with major depressive disorder being resistant to available antidepressants, there is a need to develop new treatments for this population. Stellate ganglion block (SGB) is a procedure used to block sympathetic input to the central autonomic system; it has been administered to treat several conditions, including pain. Recently, indications for SGB have extended and the potential benefits for psychiatric disorders are under investigation. Methods The Local Injection For Treating Mood Disorders (LIFT-MOOD) study investigated the feasibility of a trial of 2 right-sided injections of bupivacaine 0.5% (7 mL) at the stellate ganglion in participants with treatment-resistant depression (TRD) using a randomized, placebo-controlled, pilot trial. Ten participants were randomized in a 1:1 allocation to receive active treatment or placebo (saline). Primary feasibility outcomes included recruitment rate, withdrawal, adherence, missing data, and adverse events. As a secondary, exploratory objective, we explored the efficacy of SGB in improving symptoms of depression by calculating the change in scores from baseline to follow-up on day 42 for each treatment group. Results The recruitment rate was reasonable and sufficient, retention and adherence were high, missing data were low, and adverse events were mild and temporary. Both treatment groups demonstrated decreases in Montgomery-Åsberg Depression Rating Scale scores, compared to baseline, by the end of the study. Conclusion This study supports the feasibility of a confirmatory trial of SGB in participants with TRD. Conclusions regarding efficacy cannot be made based on this preliminary study due to the small number of participants who completed active treatment. Larger-scale randomized controlled trials with long-term follow-ups and alternate sham procedures are needed to assess the efficacy and duration of symptom improvement with the use of SGB in TRD.
Collapse
Affiliation(s)
- David Sussman
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Michelle Wu
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fathima Adamsahib
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Hyejung Jung
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wendy Lou
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Karim S Ladha
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Chen H, Peng J, Pang Q, Du H, Huang L, Gao L, Lan Y, Yang C, Song Z. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes. Angew Chem Int Ed Engl 2022; 61:e202212889. [DOI: 10.1002/anie.202212889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ju Peng
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
24
|
Ma C, Fan Y, Zheng C, Gao L, Wang W, Ke B, Song Z. (4 + 2) Annulation of Cl -NH 3+CH 2SiMe 2CH 2Cl and Propynones for the Synthesis of 1,3-Azasilinones. Org Lett 2022; 24:6631-6636. [PMID: 36054503 DOI: 10.1021/acs.orglett.2c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A useful 1,3-N,Si reagent (Cl-NH3+CH2SiMe2CH2Cl) and its (4 + 2) annulation with propynones have been developed. The (4 + 2) annulation is promoted by NaHCO3 via an intermolecular N-1,4-addition/intramolecular alkylation process, leading to 1,3-azasilinones in good yields. Diverse functionalization of the alkene, carbonyl, and nitrogen moieties on the 1,3-azasilinone has been demonstrated, showcasing the potential of the approach in the synthesis of bioactive molecules containing silaazacycles.
Collapse
Affiliation(s)
- Chang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunmei Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Zheng Y, Lu W, Xie Z, Chen K, Xiang H, Yang H. Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl N-Heterocycles. Org Lett 2022; 24:5407-5411. [PMID: 35848222 DOI: 10.1021/acs.orglett.2c02101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a photoinduced palladium-catalyzed annulation of 1,3-dienes with bifunctional halognated alkylamines has been developed, offering a facile route to access a broad range of vinylpyrrolidines. The reactivity profile of this protocol was able to be readily manipulated to assemble vinylpyrrolidine and vinlysilaazacycle. Remarkably, the utility of this strategy was further illustrated in the construction of complex and biologically important molecules as well as the diversity-oriented transformations of the resulting product.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Weidong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
26
|
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Zhou M, Liu J, Deng R, Wang Q, Wu S, Zheng P, Chi YR. Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene-Catalyzed Desymmetrization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingyun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
28
|
Ding L, Niu K, Liu Y, Wang Q. Visible Light-Induced Hydrosilylation of Electron-Deficient Alkenes by Iron Catalysis. CHEMSUSCHEM 2022; 15:e202200367. [PMID: 35302291 DOI: 10.1002/cssc.202200367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Herein, we reported a method for iron-catalyzed, visible-light-induced hydrosilylation reactions of electron-deficient alkenes to produce value-added silicon compounds. Alkenes bearing functional groups with different steric properties were suitable substrates, as were derivatives of structurally complex natural products. Mechanistic studies showed that chlorine radicals generated by iron-catalyzed ligand-to-metal charge transfer in the presence of lithium chloride promoted the formation of silyl radicals.
Collapse
Affiliation(s)
- Ling Ding
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
29
|
Wu Y, Wang P. Silicon-Stereogenic Monohydrosilane: Synthesis and Applications. Angew Chem Int Ed Engl 2022; 61:e202205382. [PMID: 35594056 DOI: 10.1002/anie.202205382] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Optically active organosilanes have been demonstrated to be versatile chiral reagents in synthetic chemistry since the early seminal contributions by Sommer and Corriu. Among these silicon-containing chiral architectures, monohydrosilanes, which bear a Si-H bond, hold a unique position because of their facile transformations through stereospecific Si-carbon or Si-heteroatom bond-formation reactions. In addition, those compounds have also been leveraged as chiral reagents for alcohol resolution, chiral auxiliaries, mechanistic probes, as well as potential optoelectronic materials. This Minireview comprehensively summarizes the synthesis and synthetic applications of silicon-stereogenic monohydrosilanes, particularly the advances in the transition-metal-catalyzed asymmetric synthesis of this class of functional molecules.
Collapse
Affiliation(s)
- Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAShcshr1, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
30
|
Wu Y, Wang P. Silicon‐Stereogenic Monohydrosilane: Synthesis and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yichen Wu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| | - Peng Wang
- Shanghai Institute of Organic Chemistry State key laboratory of organometallic chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
31
|
Tang X, Zhang Y, Tang Y, Li Y, Zhou J, Wang D, Gao L, Su Z, Song Z. Ring Expansion of Silacyclobutanes with Allenoates to Selectively Construct 2- or 3-( E)-Enoate-Substituted Silacyclohexenes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajing Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Duyang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Shamna S, Fairoosa J, Afsina CMA, Anilkumar G. Palladium-catalysed hydrosilylation of unsaturated compounds. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Wang YF, He YH, Su Y, Ji Y, Li R. Asymmetric Hydrosilylation of β-Silyl Styrenes Catalyzed by a Chiral Palladium Complex. J Org Chem 2022; 87:2831-2844. [PMID: 35080877 DOI: 10.1021/acs.joc.1c02734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium complex coordinated with a chiral SIPHOS ligand was evaluated as an efficient catalyst for asymmetric hydrosilylation of β-silyl styrenes with trichlorosilane and 23 1,2-bis(silyl) chiral compounds were produced. Good to excellent enantioselectivities were observed with 1-aryl-2-silyl ethanols, where the trichlorosilyl groups of the hydrosilylation products were selectively converted into a hydroxyl group in the presence of pre-installed trialkylsilyl groups. Asymmetric hydrosilylation of β-silyl styrenes followed by methylation of the trichlorosilyl group gave stable 1,2-bis(silyl) chiral compounds 4 with excellent yields. DFT calculations of hydridopalladium B coordinated with a SIPHOS ligand, an intermediate of the hydrosilylation reaction, established the optical structures to be energy minima, and the structural information could well illustrate the enantioselectivity for the hydrosilylation reaction.
Collapse
Affiliation(s)
- Yi-Fan Wang
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu-Han He
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Yan Su
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Ji
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Rui Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
34
|
Xue Y, Guo Z, Chen X, Li J, Zou D, Wu Y, Wu Y. Copper-promoted difunctionalization of unactivated alkenes with silanes. Org Biomol Chem 2022; 20:989-994. [PMID: 35018960 DOI: 10.1039/d1ob02318g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient copper-catalyzed cascade difunctionalization of N-allyl anilines toward the synthesis of silylated indolines using commercially available silanes has been reported. This strategy provides a new avenue for the synthesis of a diverse array of indolines in reasonable yields. Preliminary mechanistic investigations indicate that the reaction probably proceeds via a radical pathway with unactivated alkenes as radical acceptors and simple silanes as radical precursors. This protocol is distinguished by its atom economy, broad substrate scope and readily available starting materials.
Collapse
Affiliation(s)
- Yingying Xue
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhuangzhuang Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Jingya Li
- TetranovBiopharm, LLC., Zhengzhou, 450052, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450052, People's Republic of China. .,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA.
| |
Collapse
|
35
|
Bai D, Wu F, Chang L, Wang M, Wu H, Chang J. Highly Regio‐ and Enantioselective Hydrosilylation of
gem
‐Difluoroalkenes by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P.R. China
| | - Fen Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Lingna Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hao Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|
36
|
Huang J, Liu F, Wu X, Chen JQ, Wu J. Recent advance in the reactions of silacyclobutanes and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silacyclobutanes (SCBs), as a key member of organosilicon family, have received considerable attention in synthetic chemistry since the silicon-carbon bond can be activated. Followed by ring-opening and ring expansion process,...
Collapse
|
37
|
Bai D, Cheng R, Yang J, Xu W, Chen X, Chang J. Regiodivergent hydrosilylation in the nickel(0)-catalyzed cyclization of 1,6-enynes. Org Chem Front 2022. [DOI: 10.1039/d2qo01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The divergent nickel(0)-catalyzed hydrosilylation/cyclization of 1,6-enynes has been developed, providing an efficient synthetic route for vinyl silanes or alkyl silanes from the same starting materials.
Collapse
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| | - Ruoshi Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jiaxin Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Wenjie Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingge Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
38
|
Guo J, Liu S, Pang Q, Zhang H, Gao L, Chen L, Song Z. Synthesis of Silacyclohexanones from Divinylsilanes and Allylamines by a Rh-Catalyzed Cyclization. Org Lett 2021; 24:726-730. [PMID: 34967629 DOI: 10.1021/acs.orglett.1c04183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient synthesis of silacyclohexanones bearing a variety of silyl substituents has been developed by a [Rh(coe)2Cl]2/PCy3-catalyzed cyclization of divinylsilanes with Jun's allylamine. The silacyclohexanones can be oxidized with DDQ to give the corresponding silacyclohexadienones, which are further transformed into silicon analog of 2-deoxystreptamine or exo-alkylidenesilacyclohexadienes.
Collapse
Affiliation(s)
- Jiawei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hongyun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
39
|
Bai D, Wu F, Chang L, Wang M, Wu H, Chang J. Highly Regio- and Enantioselective Hydrosilylation of gem-Difluoroalkenes via Nickel Catalysis. Angew Chem Int Ed Engl 2021; 61:e202114918. [PMID: 34957676 DOI: 10.1002/anie.202114918] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The synthesis of small organic molecules with a difluoromethylated stereocenter is particularly attractive in drug discovery. Herein, we developed an efficient method for the direct generation of difluoromethylated stereocenters through Ni(0)-catalyzed regio - and enantioselective hydrosilylation of gem -difluoroalkenes. The reaction also represents the enantioselective construction of carbon(sp 3 )-silicon bonds with nickel catalysis, which provides an atom- and step-economical synthesis route of high-value optically active α-difluoromethylsilanes. This protocol features with readily available starting materials and commercial chiral catalysis, broad substrates spanning a range of functional groups with high yield (up to 99% yield) and excellent enantioselectivity (up to 96% ee). The enantioenriched products undergo a variety of stereospecific transformations. Preliminary mechanistic studies were performed.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Normal University, school of chemistry and chemical engineering, 46# jianshe road, 456007, xinxiang, CHINA
| | - Fen Wu
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Lingna Chang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Manman Wang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Hao Wu
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| | - Junbiao Chang
- Henan Normal University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
40
|
Zhao R, Ma X, Bai L, Li X, Mamouni K, Yang Y, Liu H, Danaher A, Cook N, Kucuk O, Hodges RS, Gera L, Wu D. Overcoming prostate cancer drug resistance with a novel organosilicon small molecule. Neoplasia 2021; 23:1261-1274. [PMID: 34781084 PMCID: PMC8604682 DOI: 10.1016/j.neo.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
A major challenge to the treatment of advanced prostate cancer (PCa) is the development of resistance to androgen-deprivation therapy (ADT) and chemotherapy. It is imperative to discover effective therapies to overcome drug resistance and improve clinical outcomes. We have developed a novel class of silicon-containing compounds and evaluated the anticancer activities and mechanism of action using cellular and animal models of drug-resistant PCa. Five organosilicon compounds were evaluated for their anticancer activities in the NCI-60 panel and established drug-resistant PCa cell lines. GH1504 exhibited potent in vitro cytotoxicity in a broad spectrum of human cancer cells, including PCa cells refractory to ADT and chemotherapy. Molecular studies identified several potential targets of GH1504, most notably androgen receptor (AR), AR variant 7 (AR-v7) and survivin. Mechanistically, GH1504 may promote the protein turnover of AR, AR-v7 and survivin, thereby inducing apoptosis in ADT-resistant and chemoresistant PCa cells. Animal studies demonstrated that GH1504 effectively inhibited the in vivo growth of ADT-resistant CWR22Rv1 and chemoresistant C4-2B-TaxR xenografts in subcutaneous and intraosseous models. These preclinical results indicated that GH1504 is a promising lead that can be further developed as a novel therapy for drug-resistant PCa.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China; Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xiaowei Ma
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Bai
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - HongYan Liu
- Dotquant LLC, CoMotion Labs at University of Washington, Seattle, WA, USA
| | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Nicholas Cook
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA; AMP Discovery LLC, Aurora, CO, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA; AMP Discovery LLC, Aurora, CO, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA; Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; MetCure Therapeutics LLC, Atlanta, GA, USA.
| |
Collapse
|
41
|
Zheng L, Nie X, Wu Y, Wang P. Construction of Si‐Stereogenic Silanes through C−H Activation Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Long Zheng
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiao‐Xue Nie
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
42
|
Athawale PR, Zade VM, Rama Krishna G, Reddy DS. Tuning of α-Silyl Carbocation Reactivity into Enone Transposition: Application to the Synthesis of Peribysin D, E-Volkendousin, and E-Guggulsterone. Org Lett 2021; 23:6642-6647. [PMID: 34387997 DOI: 10.1021/acs.orglett.1c02173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable method for enone transposition has been developed with the help of silyl group masking. Enantio-switching, substituent shuffling, and Z-selectivity are the highlights of the method. The developed method was applied for the first total synthesis of peribysin D along with its structural revision. Formal synthesis of E-guggulsterone and E-volkendousin was also claimed using a short sequence.
Collapse
Affiliation(s)
- Paresh R Athawale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal M Zade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
43
|
Wang W, Zhou S, Li L, He Y, Dong X, Gao L, Wang Q, Song Z. 3-Silaazetidine: An Unexplored yet Versatile Organosilane Species for Ring Expansion toward Silaazacycles. J Am Chem Soc 2021; 143:11141-11151. [PMID: 34279908 DOI: 10.1021/jacs.1c04667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small-ring silacycles are important organosilane species in main-group chemistry and have found numerous applications in organic synthesis. 3-Silaazetidine, a unique small silacycle bearing silicon and nitrogen atoms, has not been adequately explored due to the lack of a general synthetic scheme and its sensitivity to air. Here, we describe that 3-silaazetidine can be easily prepared in situ from diverse air-stable precursors (RSO2NHCH2SiR12CH2Cl). 3-Silaazetidine shows excellent functional group tolerance in a palladium-catalyzed ring expansion reaction with terminal alkynes, giving 3-silatetrahydropyridines and diverse silaazacycle derivatives, which are promising ring frameworks for the discovery of Si-containing functional molecules.
Collapse
Affiliation(s)
- Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Song Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Linjie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuanhang He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xue Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
44
|
|
45
|
Wei G, Huang MW, Wang WJ, Wu Y, Mei SF, Zhou LM, Mei LC, Zhu XL, Yang GF. Expanding the Chemical Space of Succinate Dehydrogenase Inhibitors via the Carbon-Silicon Switch Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3965-3971. [PMID: 33779164 DOI: 10.1021/acs.jafc.0c07322] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The carbon-silicon switch strategy has become a key technique for structural optimization of drugs to widen the chemical space, increase drug activity against targeted proteins, and generate novel and patentable lead compounds. Flubeneteram, targeting succinate dehydrogenase (SDH), is a promising fungicide candidate recently developed in China. We describe the synthesis of novel SDH inhibitors with enhanced fungicidal activity to enlarge the chemical space of flubeneteram by employing the C-Si switch strategy. Several of the thus formed flubeneteram-silyl derivatives exhibited improved fungicidal activity against porcine SDH compared with the lead compound flubeneteram and the positive controls. Disease control experiments conducted in a greenhouse showed that trimethyl-silyl-substituted compound W2 showed comparable and even higher fungicidal activities compared to benzovindiflupyr and flubeneteram, respectively, even with a low concentration of 0.19 mg/L for soybean rust control. Furthermore, compound W2 encouragingly performed slightly better control than azoxystrobin and was less active than benzovindiflupyr at the concentration of 100 mg/L against soybean rust in field trials. The computational results showed that the silyl-substituted phenyl moiety in W2 could form strong van der Waals (VDW) interactions with SDH. Our results indicate that the C-Si switch strategy is an effective method for the development of novel SDH inhibitors.
Collapse
Affiliation(s)
- Ge Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Ming-Wei Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Wen-Jie Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Yuan Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Shu-Fen Mei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Li-Ming Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Long-Can Mei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Luoyu Road 152, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
46
|
Synergistic Ni/Cu catalyzed migratory arylsilylation of terminal olefins. Sci Bull (Beijing) 2021; 66:570-577. [PMID: 36654427 DOI: 10.1016/j.scib.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
Synthesis of organosilanes from alkenes is a very important topic owing to their wide applications. A Ni/Cu dual metal-catalyzed arylsilylation of terminal alkenes, featuring migratory selectivity, has been developed. A wide diversity of aliphatic silanes have been prepared from terminal alkenes, aryl halides and Suginome's reagent. This protocol is highlighted by excellent regioselectivity, mild reaction conditions and good functional group tolerance. In addition to benzylic positions, carbon-carbon bonds can also be constructed at allylic positions. Preliminary mechanistic studies suggest that the copper cocatalyst promotes the transmetalation of Suginome's reagent, and the addition of a PyrOx ligand inhibits the formation of side-products from the carbon-Heck pathway. Moreover, studies toward the nature of the PyrOx ligand revealed that the steric hindrance of the oxazoline moiety greatly affects the chain-walking process, but not the arylation step.
Collapse
|
47
|
Luo G, Chen L, Li Y, Fan Y, Wang D, Yang Y, Gao L, Jiang R, Song Z. Asymmetric total synthesis and antidepressant activity of (−)-sila-mesembranol bearing a silicon stereocenter. Org Chem Front 2021. [DOI: 10.1039/d1qo00682g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asymmetric total synthesis of (−)-sila-mesembranol, the silicon analog of the natural alkaloid (−)-mesembranol has been achieved in 3.3% yield over 11 steps. The synthetic (−)-sila-mesembranol in mice exhibits better antidepressant effects than its carbon counterpart.
Collapse
Affiliation(s)
- Gan Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lingmin Chen
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610000, China
| | - Yi Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Duyang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610000, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
48
|
Zhang Y, Guo J, Huang J, Fu Z. N-Heterocyclic Carbene-Catalyzed [4+2] Annulation of Acetates and β-Silyl Enones: Highly Enantioselective Synthesis of β-Silyl δ-Lactones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Zhang Y, Huang X, Guo J, Wei C, Gong M, Fu Z. Carbene-Catalyzed Enantioselective Synthesis of γ-Keto-β-silyl Esters and Amides. Org Lett 2020; 22:9545-9550. [PMID: 33300797 DOI: 10.1021/acs.orglett.0c03589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A variety of γ-keto-β-silyl esters and amides, most with extremely high enantioselectivities, were efficiently prepared via a carbene-catalyzed formal [4 + 2] annulation followed by ring opening with nucleophiles. The resulting compounds from this one-pot strategy can be easily converted into enantioenriched β,σ-dihydroxyl esters.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
50
|
Biswas S, Pal S, Uyeda C. Nickel-catalyzed insertions of vinylidenes into Si-H bonds. Chem Commun (Camb) 2020; 56:14175-14178. [PMID: 33141128 DOI: 10.1039/d0cc05970f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nickel-catalyzed reductive cyclization of 1,1-dichloroalkenyl silanes is reported. The products of this reaction are unsaturated five- or six-membered silacycles. Intermolecular variants are also described, providing access to trisubstituted vinyl silanes that are not accessible by alkyne hydrosilylation or sila-Heck-type processes. A variety of silanes can be utilized, including those that serve as nucleophilic partners in Hiyama cross-coupling reactions. Mechanistic studies using deuterium-labelled silanes are described.
Collapse
Affiliation(s)
- Sourish Biswas
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, USA.
| | | | | |
Collapse
|