1
|
Yan F, Gao M, Gong Y, Zhang L, Ai N, Zhang J, Chai Y, Wu S, Liu Q, Jiang X, Deng H, Liu W. Proteomic analysis of underlying apoptosis mechanisms of human retinal pigment epithelial ARPE-19 cells in response to mechanical stretch. J Cell Physiol 2020; 235:7604-7619. [PMID: 32437028 DOI: 10.1002/jcp.29670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Our previous study demonstrated mechanical stretch (MS) could induce the apoptosis of retinal pigment epithelial (RPE) cells, but the related mechanisms remained unclear. This study was to characterize the protein expression profile in RPE cell line ARPE-19 exposed to MS, cytochalasin D (CD; an inhibitor of actin polymerization) or CD + MS at 2-time points (6, 24 hr; n = 3, at each time point) by using proteomics technique. Our data highlighted that compared with control, ECE1 was continuously downregulated in ARPE-19 cells treated by MS or CD + MS from 6 to 24 hr. Function and protein-protein interaction network analyses showed ATAD2 was downregulated in all three treatment groups compared with control, but successive upregulation of RPS13 and RPL7 and downregulation of AHSG were specifically induced by MS. ATAD2 was enriched in cell cycle; AHSG was associated with membrane organization; RPS13 and RPL7 participated in ribosome biogenesis. Furthermore, transcription factor CREB1 that was upregulated in MS group at 24 hr after treatment, may negatively regulate ATAD2. The expressions of all crucial proteins in ARPE-19 cells were confirmed by western blot analysis. Overexpression of ATAD2 and AHSG were also shown to reverse the apoptosis of ARPE-19 cells induced by MS or CD + MS, with significantly decreased apoptotic rates and caspase-3 activities. Accordingly, our findings suggest downregulation of ATAD2 and AHSG may be potential contributors to the apoptosis of RPE cells induced by MS. Overexpression of them may represent underlying preventive and therapeutic strategies for MS-induced retinal disorders.
Collapse
Affiliation(s)
- Fancheng Yan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yiyi Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical, Beijing, China
| | - Lin Zhang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, Tsinghua University, Beijing, China
| | - Nanping Ai
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Yijie Chai
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Xian Jiang
- Department of Ophthalmology, The First People's Hospital of Huainan, The First Affiliated Hospital, Anhui University of Science and Technology, Anhui, China
| | - Haiteng Deng
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, Tsinghua University, Beijing, China
| | - Wu Liu
- Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Chen JL, Hung CT, Keller JJ, Lin HC, Wu YJ. Proteomic analysis of retinal pigment epithelium cells after exposure to UVA radiation. BMC Ophthalmol 2019; 19:168. [PMID: 31375076 PMCID: PMC6679551 DOI: 10.1186/s12886-019-1151-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the primary cause of blindness and severe vision loss in developed countries and is responsible for 8.7% of blindness globally. Ultraviolet radiation can induce DNA breakdown, produce reactive oxygen species, and has been implicated as a risk factor for AMD. This study investigated the effects of UVA radiation on Human retinal pigment epithelial cell (ARPE-19) growth and protein expression. Methods ARPE-19 cells were irradiated with a UVA lamp at different doses (5, 10, 20, 30 and 40 J/cm2) from 10 cm. Cell viability was determined by MTT assay. Visual inspection was first achieved with inverted light microscopy and then the DeadEnd™ Fluorometric TUNEL System was used to observe nuclear DNA fragmentation. Flow cytometry based-Annexin V-FITC/PI double-staining was used to further quantify cellular viability. Mitochondrial membrane potential was assessed with JC-1 staining. 2D electrophoresis maps of exposed cells were compared to nonexposed cells and gel images analyzed with PDQuest 2-D Analysis Software. Spots with greater than a 1.5-fold difference were selected for LC-MS/MS analysis and some confirmed by western blot. We further investigated whether caspase activation, apoptotic-related mitochondrial proteins, and regulators of ER stress sensors were involved in UVA-induced apoptosis. Results We detected 29 differentially expressed proteins (9 up-regulated and 20 down-regulated) in the exposed cells. Some of these proteins such as CALR, GRP78, NPM, Hsp27, PDI, ATP synthase subunit alpha, PRDX1, and GAPDH are associated with anti-proliferation, induction of apoptosis, and oxidative-stress protection. We also detected altered protein expression levels among caspases (caspase 3 and 9) and in the mitochondrial (cytosolic cytochrome C, AIF, Mcl-1, Bcl-2, Bcl-xl, Bax, Bad, and p-Bad) and ER stress-related (p-PERK, p-eIF2α, ATF4 and CHOP) apoptotic pathways. Conclusions UVA irradiation suppressed the proliferation of ARPE-19 cells in a dose-dependent manner, caused quantitative loses in transmembrane potential (ΔΨm), and induced both early and late apoptosis.
Collapse
Affiliation(s)
- Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Tzu Hung
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Joseph Jordan Keller
- College of Medicine, The Ohio State University, Columbus, OH, USA.,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,International Master's Program, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hsien-Chung Lin
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan. .,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
3
|
Zhu X, Wang K, Zhou F, Zhu L. Paeoniflorin attenuates atRAL-induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in retinal pigment epithelial cells via triggering Ca 2+/CaMKII-dependent activation of AMPK. Arch Pharm Res 2018; 41:1009-1018. [PMID: 30117083 DOI: 10.1007/s12272-018-1059-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022]
Abstract
Abnormal accumulation of the free-form all-trans-retinal (atRAL), a major intermediate of human visual cycle, is considered to be a key cause of retinal pigment epithelial (RPE) dysfunction in the pathogenesis of retinal degenerative diseases such as age-related macular degeneration (AMD). Paeoniflorin (PF), a monoterpene glucoside isolated from Paeonia lactiflora Pall., has been used in clinical treatment of retinal degenerative diseases in China for several years; however, the underlying mechanism remains unclear. The aim of this study is to investigate the protective effect of PF against atRAL toxicity in human ARPE-19 cells and its molecular mechanism. The results of our study showed that the pre-treatment of PF dose-dependently attenuated atRAL-induced cell injury by the reduction of Nox1/ROS-associated oxidative stress, mitochondrial dysfunction and GRP78-PERK-eIF2α-ATF4-CHOP-regulated endoplasmic reticulum (ER) stress in ARPE-19 cells. Additionally, our data showed that PF mainly exerted its activity via triggering calcium-calmodulin dependent protein kinase II (CaMKII)-mediated activation of AMP-activated protein kinase (AMPK). AMPK inhibition significantly reversed the protective effect of PF against atRAL toxicity in ARPE-19 cells. Overall, our findings provided the novel mechanism of PF protecting human RPE cells, which may prevent the progression of retinal degenerative diseases.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| | - Fanfan Zhou
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
4
|
Chong YS, Mai CW, Leong CO, Wong LC. Lutein improves cell viability and reduces Alu RNA accumulation in hydrogen peroxide challenged retinal pigment epithelial cells. Cutan Ocul Toxicol 2018; 37:52-60. [PMID: 28554225 DOI: 10.1080/15569527.2017.1335748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Dysfunction of the microRNA (miRNA)-processing enzyme DICER1 and Alu RNA accumulation are linked to the pathogenesis of age-related macular degeneration (AMD). This study determined the optimal dose of lutein (LUT) and zeaxanthin (ZEA) to protect human retinal pigment epithelium (RPE) cells against hydrogen peroxide (H2O2). The effect of the optimal dose of LUT and ZEA as DICER1 and Alu RNA modulators in cultured human RPE cells challenged with H2O2 was investigated. MATERIALS AND METHODS ARPE-19 cells were pre-treated with LUT, ZEA, or both for 24 h before 200 μM H2O2 challenge. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. DICER1 and Alu RNA were quantified by western blotting and real-time polymerase chain reaction, respectively. RESULTS H2O2 increased cell Alu RNA expression and decreased cell viability of ARPE-19, but had no significant impact on the DICER1 protein level. LUT, alone and in combination with ZEA pre-treatment, prior to H2O2 challenge significantly improved cell viability of ARPE-19 and reduced the level of Alu RNA compared to the negative control. CONCLUSIONS These results support the use of LUT alone, and in combination with ZEA, in AMD prevention and treatment. This study is also the first to report LUT modulating effects on Alu RNA.
Collapse
Affiliation(s)
- You Sheng Chong
- a School of Medicine , International Medical University , Kuala Lumpur , Malaysia
| | - Chun Wai Mai
- b Department of Pharmaceutical Chemistry, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| | - Chee Onn Leong
- c Department of Life Sciences, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| | - Lai Chun Wong
- b Department of Pharmaceutical Chemistry, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| |
Collapse
|
5
|
Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol 2018; 46:670-686. [PMID: 29205705 DOI: 10.1111/ceo.13121] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of cells located between the neuroretina and the choriocapillaries. The RPE serves several important functions in the eye: formation of the blood-retinal barrier, protection of the retina from oxidative stress, nutrient delivery and waste disposal, ionic homeostasis, phagocytosis of photoreceptor outer segments, synthesis and release of growth factors, reisomerization of all-trans-retinal during the visual cycle, and establishment of ocular immune privilege. Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Dysfunction of the RPE has been associated with the pathogenesis of AMD in relation to increased oxidative stress, mitochondrial destabilization and complement dysregulation. Photobiomodulation or near infrared light therapy which refers to non-invasive irradiation of tissue with light in the far-red to near-infrared light spectrum (630-1000 nm), is an intervention that specifically targets key mechanisms of RPE dysfunction that are implicated in AMD pathogenesis. The current evidence for the efficacy of photobiomodulation in AMD is poor but its safety profile and proposed mechanisms of action motivate further research as a novel therapy for AMD.
Collapse
Affiliation(s)
- Jack Ao
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - John Pm Wood
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark C Gillies
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Fontaine V, Monteiro E, Brazhnikova E, Lesage L, Balducci C, Guibout L, Feraille L, Elena PP, Sahel JA, Veillet S, Lafont R. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo. PLoS One 2016; 11:e0167793. [PMID: 27992460 PMCID: PMC5161507 DOI: 10.1371/journal.pone.0167793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/20/2016] [Indexed: 12/31/2022] Open
Abstract
The accumulation of N-retinylidene-N-retinylethanolamine (A2E, a toxic by-product of the visual pigment cycle) in the retinal pigment epithelium (RPE) is a major cause of visual impairment in the elderly. Photooxidation of A2E results in retinal pigment epithelium degeneration followed by that of associated photoreceptors. Present treatments rely on nutrient supplementation with antioxidants. 9’-cis-Norbixin (a natural diapocarotenoid, 97% purity) was prepared from Bixa orellana seeds. It was first evaluated in primary cultures of porcine retinal pigment epithelium cells challenged with A2E and illuminated with blue light, and it provided an improved photo-protection as compared with lutein or zeaxanthin. In Abca4-/-Rdh8-/- mice (a model of dry AMD), intravitreally-injected norbixin maintained the electroretinogram and protected photoreceptors against light damage. In a standard rat blue-light model of photodamage, norbixin was at least equally as active as phenyl-N-tert-butylnitrone, a free radical spin-trap. Chronic experiments performed with Abca4-/-Rdh8-/- mice treated orally for 3 months with norbixin showed a reduced A2E accumulation in the retina. Norbixin appears promising for developing an oral treatment of macular degeneration. A drug candidate (BIO201) with 9’-cis-norbixin as the active principle ingredient is under development, and its potential will be assessed in a forthcoming clinical trial.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
- * E-mail:
| | - Elodie Monteiro
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Elena Brazhnikova
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Laëtitia Lesage
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Christine Balducci
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | - Louis Guibout
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | | | | | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Stanislas Veillet
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | - René Lafont
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| |
Collapse
|
7
|
Qin S, Lu Y, Rodrigues GA. Resveratrol protects RPE cells from sodium iodate by modulating PPARα and PPARδ. Exp Eye Res 2013; 118:100-8. [PMID: 24309288 DOI: 10.1016/j.exer.2013.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/01/2013] [Accepted: 11/20/2013] [Indexed: 11/29/2022]
Abstract
Selective killing of RPE cells in vivo by sodium iodate develops cardinal phenotypes of atrophic age-related macular degeneration. However, the molecular mechanisms are elusive. We tried to search for small cyto-protective molecules against sodium iodate and explore their mechanisms of action. Sodium iodate-mediated RPE cell death was associated with increased levels of reactive oxygen species (ROS) and IL-8. Resveratrol, a natural occurring polyphenol compound, was found to strongly protect RPE cells from sodium iodate with inhibition of production of ROS and IL-8. Resveratrol activated all isoforms of PPARs. Treatment with PPARα and PPARδ agonists inhibited sodium iodate-induced ROS production and protected RPE cells from sodium iodate. A PPARα antagonist significantly reduced resveratrol's protection of RPE cells from sodium iodate. Paradoxically, knocking down PPARδ also rendered RPE cells resistant to sodium iodate. Moreover, PPAR agonists reversed sodium iodate-induced production of IL-8. However, neutralizing extracellular IL-8 failed to protect RPE cells from sodium iodate. Taken together, these observations show that resveratrol protects RPE cells from sodium iodate injury through the activation of PPARα and alteration of PPARδ conformation. PPARα and δ modulators might ameliorate stress-induced RPE degeneration in vivo.
Collapse
Affiliation(s)
- Suofu Qin
- Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
| | - Yimin Lu
- Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Gerard A Rodrigues
- Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
8
|
Biasutto L, Chiechi A, Couch R, Liotta LA, Espina V. Retinal pigment epithelium (RPE) exosomes contain signaling phosphoproteins affected by oxidative stress. Exp Cell Res 2013; 319:2113-2123. [PMID: 23669273 DOI: 10.1016/j.yexcr.2013.05.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss and blindness among the elderly population in the industrialized world. One of the typical features of this pathology is the gradual death of retinal pigment epithelial (RPE) cells, which are essential for maintaining photoreceptor functions and survival. The etiology is multifactorial, and oxidative stress is clearly one of the key factors involved in disease pathogenesis (Plafker, Adv. Exp. Med. Biol. 664 (2010) 447-56; Qin, Drug Dev. Res. 68 (2007) 213-225). Recent work has revealed the presence of phosphorylated signaling proteins in the vitreous humour of patients affected by AMD or other retinal diseases. While the location of these signaling proteins is typically the cell membrane or intracellular compartments, vitreous samples were proven to be cell-free (Davuluri et al., Arch. Ophthalmol. 127 (2009) 613-21). To gain a better understanding of how these proteins can be shed into the vitreous, we used reverse phase protein arrays (RPMA) to analyze the protein and phosphoprotein content of exosomes shed by cultured ARPE-19 cells under oxidative stress conditions. Seventy two proteins were shown to be released by ARPE-19 cells and compartmentalized within exosomes. Forty one of them were selectively detected in their post-translationally modified form (i.e., phosphorylated or cleaved) for the first time in exosomes. Sets of these proteins were linked together reflecting activation of pathway units within exosomes. A subset of (phospho)proteins were altered in exosomes secreted by ARPE-19 cells subjected to oxidative stress, compared to that secreted by control/non stressed cells. Stress-altered exosome proteins were found to be involved in pathways regulating apoptosis/survival (i.e, Bak, Smac/Diablo, PDK1 (S241), Akt (T308), Src (Y416), Elk1 (S383), ERK 1/2 (T202/Y204)) and cell metabolism (i.e., AMPKα1 (S485), acetyl-CoA carboxylase (S79), LDHA). Exosomes may thus represent the conduit through which membrane and intracellular signaling proteins are released into the vitreous. Changes in their (phospho)protein content upon stress conditions suggest their possible role in mediating cell-cell signaling during physio-pathological events; furthermore, exosomes may represent a potential source of biomarkers.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience, Viale G. Colombo 3, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Antonella Chiechi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Robin Couch
- Department of Chemistry and Biochemistry, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| |
Collapse
|
9
|
Qin S, Rodrigues GA. Roles of αvβ5, FAK and MerTK in oxidative stress inhibition of RPE cell phagocytosis. Exp Eye Res 2012; 94:63-70. [DOI: 10.1016/j.exer.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 12/01/2022]
|
10
|
Qin S. Roles for AMP-Activated Protein Kinase in RPE Cell Function. RETINAL DEGENERATIVE DISEASES 2012; 723:745-51. [DOI: 10.1007/978-1-4614-0631-0_95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Wysokinski D, Synowiec E, Chmielewska M, Wozniak K, Zaras M, Sklodowska A, Blasiak J, Szaflik J, Szaflik JP. Lack of association between the c.544G>A polymorphism of the heme oxygenase-2 gene and age-related macular degeneration. Med Sci Monit 2011; 17:CR449-455. [PMID: 21804464 PMCID: PMC3539623 DOI: 10.12659/msm.881906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a primary cause of blindness among the elderly in developed countries. The nature of AMD is complex and includes both environmental and hereditary factors. Oxidative stress is thought to be essential in AMD pathogenesis. Iron is suggested to be implicated in the pathogenesis of AMD through the catalysis of the production of reactive oxygen species, which can damage the retina. Heme oxygenase-2 is capable of degradation of heme producing free iron ions, thus, diversity in heme oxygenase-2 gene may contribute to AMD. In the present work we analyzed the association between the c.544G>A polymorphism of the heme oxygenase-2 gene (HMOX2) (rs1051308) and AMD. Material/Methods This study enrolled 276 AMD patients and 105 sex- and age-matched controls. Genotyping of the polymorphism was performed with restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) on DNA isolated from peripheral blood. Results We did not find any association between the genotypes of the c.544G>A polymorphism and the occurrence of AMD. This lack of association was independent of potential AMD risk factors: tobacco smoking, sex and age. Moreover, we did not find any association between AMD and smoking in our study population. Conclusions The results suggest that the c.544G>A polymorphism of the heme oxygenase-2 gene is not associated with AMD in this Polish subpopulation.
Collapse
|
12
|
Pintea A, Rugină DO, Pop R, Bunea A, Socaciu C. Xanthophylls protect against induced oxidation in cultured human retinal pigment epithelial cells. J Food Compost Anal 2011. [DOI: 10.1016/j.jfca.2011.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wysokinski D, Szaflik J, Sklodowska A, Kolodziejska U, Dorecka M, Romaniuk D, Wozniak K, Blasiak J, Szaflik JP. The A Allele of the -576G>A polymorphism of the transferrin gene is associated with the increased risk of age-related macular degeneration in smokers. TOHOKU J EXP MED 2011; 223:253-61. [PMID: 21422745 DOI: 10.1620/tjem.223.253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries, and its pathogenesis is underlined by genetic and environmental factors. Oxidative stress is a major environmental risk factor of AMD; namely, AMD is associated with the increased level of reactive oxygen species, which may be produced in reactions catalyzed by iron present in the retina. Therefore, variability of the genes of iron metabolism may be important in the AMD risk. In the present study, we analyzed the association between AMD and the -576G>A polymorphism of the transferrin gene or the 1892C>T polymorphism of the transferrin receptor 2 (TFR2) gene in 278 patients with AMD and 105 controls. The former polymorphism is located in the promoter region of the transferrin gene and may affect the level of its transcription, while the latter is a synonymous mutation in the exon 16, which may affect the efficiency of translation of TFR2 mRNA. Transferrin and TFR2 are important in iron homeostasis. The A allele of the -576A>G polymorphism was significantly associated with the increased risk of AMD in tobacco smokers, whereas the 1892C>T polymorphism did not influence the risk of AMD related to smoking. Moreover, each polymorphism does not influence the risk of AMD associated with age, sex or the family history of the disease. In conclusion, the A allele of the -576A>G polymorphism of the transferrin gene may increase the risk of AMD in smokers.
Collapse
|
14
|
Pintea A, Rugină D, Pop R, Bunea A, Socaciu C, Diehl HA. Antioxidant effect of trans-resveratrol in cultured human retinal pigment epithelial cells. J Ocul Pharmacol Ther 2011; 27:315-21. [PMID: 21663493 DOI: 10.1089/jop.2010.0144] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Oxidative damages to the retinal pigment epithelium (RPE) have been suggested to play a key role in the pathogenesis of age-related macular degeneration. trans-Resveratrol (3,4',5-trihydroxystilbene) is a nonflavonoid dietary polyphenol with various pharmacological effects, including antioxidant activity. The purpose of this study was to evaluate the potential protective effect of resveratrol against hydrogen peroxide induced oxidative stress in cultured human RPE cells. METHODS Human retinal D407 RPE cells were pretreated with resveratrol at 3 different concentrations (25, 50, and 100 μM) for 24 h and exposed for 1 h to 500 μM hydrogen peroxide. Cell viability, cytotoxicity, and the level of intracellular reactive oxygen species (ROS) were determined in basal and oxidative stress conditions. The concentration of reduced glutathione and the activities of catalase, superoxide dismutase, and glutathione peroxidase were also examined under both experimental conditions. RESULTS Resveratrol in culture media had no cytotoxic effect at a concentration of 25-100 μM but showed a protective effect against hydrogen peroxide-induced cytoxicity. Pretreatment with resveratrol induced a significant, dose-dependent increase of superoxide dismutase, glutathione peroxidase, and catalase activities. Moreover, resveratrol significantly enhanced the level of reduced glutathione under both basal and oxidative stress conditions. The significant inhibition of the intracellular ROS generation supports the hypothesis that resveratrol can also contribute to the antioxidant defense by directly scavenging the ROS in RPE cells. CONCLUSIONS Our results indicate that treatment of RPE cells with resveratrol at micromolar concentrations confers a marked protection against oxidative stress. These data suggest that dietary supplementation of resveratrol may contribute to the prevention of RPE degeneration induced by oxidative stress.
Collapse
Affiliation(s)
- Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | | | | | | | | | | |
Collapse
|
15
|
Qin S. Suofu Qin’s work on studies of cell survival signaling in cancer and epithelial cells. World J Biol Chem 2010; 1:369-76. [PMID: 21537472 PMCID: PMC3083942 DOI: 10.4331/wjbc.v1.i12.369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/21/2010] [Accepted: 10/28/2010] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin’s work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Suofu Qin
- Suofu Qin, Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612-1599, United States
| |
Collapse
|
16
|
Qin S, Rodrigues GA. Differential roles of AMPKα1 and AMPKα2 in regulating 4-HNE-induced RPE cell death and permeability. Exp Eye Res 2010; 91:818-24. [PMID: 21029733 DOI: 10.1016/j.exer.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/18/2010] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
Lipid peroxidation products such as 4-hydroxy-2-nonenal (4-HNE) cause dysfunction and death of retinal pigmented epithelial (RPE) cells, thereby leading to retinal degeneration. The molecular mechanisms underlying their action remain elusive however. In this study, the roles of AMP-activated protein kinase (AMPK) in 4-HNE-induced RPE cell dysfunction and viability were addressed. 4-HNE caused RPE cell death and down-regulated basal activity of AMPK as evidenced by decreased Thr(172) phosphorylation of AMPKα. Exposure of RPE cells to the AMPK inhibitor, compound C also led to cell death, indicating that RPE cell death is correlated with 4-HNE modulation of AMPK activity. ARPE19 cells express both AMPKα1 and AMPKα2 with predominant expression of the AMPKα1 isoform. siRNA studies revealed that knockdown of AMPKα1 expression sensitized RPE cells to 4-HNE. Intriguingly, knockdown of AMPKα2 protected RPE cells from 4-HNE injury. Sub-lethal doses of 4-HNE induced an increase in RPE monolayer permeability, as measured by reduction in trans-epithelial resistance (TER). Knockdown of AMPKα2 but not AMPKα1 significantly restored RPE cell barrier function. No further protection was observed by knockdown of both AMPKα1 and AMPKα2. In contrast, knockdown of AMPKα1 and/or AMPKα2 did not reverse the 4-HNE's inhibitory effects on production of IL-8 and MCP-1. These data demonstrate that AMPKα1 and AMPKα2 play distinct roles in regulating 4-HNE effects on RPE function and viability. Therefore, selective modulation of AMPKα activity may benefit patients with retinal degeneration associated with RPE cell atrophy.
Collapse
Affiliation(s)
- Suofu Qin
- Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
| | | |
Collapse
|