1
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Miller SM, Wilson LE, Greiner MA, Pritchard JE, Zhang T, Kaye DR, Cohen HJ, Becher RD, Maerz LL, Dinan MA. Evaluation of mild cognitive impairment and dementia in patients with metastatic renal cell carcinoma. J Geriatr Oncol 2022; 13:635-643. [PMID: 34996724 PMCID: PMC9232862 DOI: 10.1016/j.jgo.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Dementia and cancer are both more common in adults as they age. As new cancer treatments become more popular, it is important to consider how these treatments might affect older patients. This study evaluates metastatic renal cell carcinoma (mRCC) as a risk factor for older adults developing mild cognitive impairment or dementia (MCI/D) and the impact of mRCC-directed therapies on the development of MCI/D. METHODS We identified patients diagnosed with mRCC in a Surveillance, Epidemiology, and End Results (SEER)-Medicare dataset from 2007 to 2015 and matched them to non-cancer controls. Exclusion criteria included age < 65 years at mRCC diagnosis and diagnosis of MCI/D within the year preceding mRCC diagnosis. The main outcome was time to incident MCI/D within one year of mRCC diagnosis for cases or cohort entry for non-cancer controls. Cox proportional hazards models were used to measure associations between mRCC and incident MCI/D as well as associations of oral anticancer agent (OAA) use with MCI/D development within the mRCC group. RESULTS Patients with mRCC (n = 2533) were matched to non-cancer controls (n = 7027). mRCC (hazard ratio [HR] 8.52, p < .001), being older (HR 1.05 per 1-year age increase, p < .001), and identifying as Black (HR 1.92, p = .047) were predictive of developing MCI/D. In addition, neither those initiating treatment with OAAs nor those who underwent nephrectomy were more likely to develop MCI/D. CONCLUSIONS Patients with mRCC were more likely to develop MCI/D than those without mRCC. The medical and surgical therapies evaluated were not associated with increased incidence of MCI/D. The increased incidence of MCI/D in older adults with mRCC may be the result of the pathology itself or risk factors common to the two disease processes.
Collapse
Affiliation(s)
- Samuel M Miller
- National Clinician Scholars Program, Yale University, USA; Department of Surgery, Yale University, USA.
| | - Lauren E Wilson
- Department of Population Health Sciences, Duke University, USA
| | | | | | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, USA
| | - Deborah R Kaye
- Department of Surgery, Division of Urology, Duke University, USA
| | - Harvey Jay Cohen
- Center for the Study of Aging and Human Development, Duke University, USA
| | | | | | | |
Collapse
|
3
|
Inhibition of Cdk5 in PV Neurons Reactivates Experience-Dependent Plasticity in Adult Visual Cortex. Int J Mol Sci 2021; 23:ijms23010186. [PMID: 35008611 PMCID: PMC8745415 DOI: 10.3390/ijms23010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) has been shown to play a critical role in brain development, learning, memory and neural processing in general. Cdk5 is widely distributed in many neuron types in the central nervous system, while its cell-specific role is largely unknown. Our previous study showed that Cdk5 inhibition restored ocular dominance (OD) plasticity in adulthood. In this study, we specifically knocked down Cdk5 in different types of neurons in the visual cortex and examined OD plasticity by optical imaging of intrinsic signals. Downregulation of Cdk5 in parvalbumin-expressing (PV) inhibitory neurons, but not other neurons, reactivated adult mouse visual cortical plasticity. Cdk5 knockdown in PV neurons reduced the evoked firing rate, which was accompanied by an increment in the threshold current for the generation of a single action potential (AP) and hyperpolarization of the resting membrane potential. Moreover, chemogenetic activation of PV neurons in the visual cortex can attenuate the restoration of OD plasticity by Cdk5 inhibition. Taken together, our results suggest that Cdk5 in PV interneurons may play a role in modulating the excitation and inhibition balance to control the plasticity of the visual cortex.
Collapse
|
4
|
Khokar R, Hachani K, Hasan M, Othmani F, Essam M, Al Mamari A, UM D, Khan SA. Anti-Alzheimer potential of a waste by-product (peel) of Omani pomegranate fruits: Quantification of phenolic compounds, in-vitro antioxidant, anti-cholinesterase and in-silico studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
6
|
Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur J Med Chem 2019; 168:58-77. [DOI: 10.1016/j.ejmech.2018.12.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
|
7
|
Li Y, Wang L, Zhang X, Huang M, Li S, Wang X, Chen L, Jiang B, Yang Y. Inhibition of Cdk5 rejuvenates inhibitory circuits and restores experience-dependent plasticity in adult visual cortex. Neuropharmacology 2017; 128:207-220. [PMID: 29031852 DOI: 10.1016/j.neuropharm.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) acts as an essential modulator for neural development and neurological disorders. Here we show that Cdk5 plays a pivotal role in modulating GABAergic signaling and the maturation of visual system. In adult mouse primary visual cortex, Cdk5 formed complex with the GABA synthetic enzyme glutamate decarboxylase GAD67, but not with GAD65. In addition to enhancement in the surface level of NR2B-containing NMDA receptors, inhibition of Cdk5 reduced the protein levels of GADs and Otx2, while leaving intact the expression of vesicular GABA transporter and subunits of GABAA or AMPA receptors. Whole-cell patch-clamp recording in layer II/III pyramidal neurons revealed a decrease in the frequency of miniature inhibitory postsynaptic current (mIPSC). Consequently, pharmacological inhibition and genetic knockdown of Cdk5 in adult mice led to a restoration of juvenile-like ocular dominance plasticity in vivo and long-term synaptic potential in layer II/III induced by white matter stimulation in vitro. Interestingly, we did not observe an alteration of perineuronal nets of extracellular matrix, but a reinstatement of the capability to evoke long-term depression at inhibitory synapses (iLTD), which depended on presynaptic endocannabinoid receptors and was a sign of the rejuvenated GABAergic synapses. Enhancement of GABA signaling by diazepam impeded ocular dominance plasticity rescued by Cdk5 inhibition. These results thus suggest that a physiological role of Cdk5 in visual cortex is to consolidate and stabilize neural circuits through controlling GABAergic signaling.
Collapse
Affiliation(s)
- Yue Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Laijian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xinxin Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mengyao Huang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Sitong Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinxing Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
8
|
Rodrigues RP, Silva CHTPD. Discovery of potential neurodegenerative inhibitors in Alzheimer’s disease by casein kinase 1 structure-based virtual screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2020-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Labrière C, Lozach O, Blairvacq M, Meijer L, Guillou C. Further investigation of Paprotrain: Towards the conception of selective and multi-targeted CNS kinase inhibitors. Eur J Med Chem 2016; 124:920-934. [DOI: 10.1016/j.ejmech.2016.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
10
|
Sun W, Lee S, Huang X, Liu S, Inayathullah M, Kim KM, Tang H, Ashford JW, Rajadas J. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer's disease treatment. Sci Rep 2016; 6:34784. [PMID: 27708431 PMCID: PMC5052533 DOI: 10.1038/srep34784] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/19/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by genotypic and phenotypic heterogeneity. Critical components of the two AD pathological pathways, Aβ-amyloidosis and Tauopathy, have been considered as therapeutic targets. Among them, much effort is focused on aberrant Tau phosphorylation and targeting Tau-phosphorylating kinases. Methylene blue (MB), a phenothiazine dye that crosses the blood-brain barrier, has been shown to hit multiple molecular targets involved in AD and have beneficial effects in clinical studies. Here we present evidence that microtubule affinity-regulating kinase (MARK4) is a novel target of MB. MB partially rescued the synaptic toxicity in Drosophila larva overexpressing PAR1 (MARK analog). In 293T culture, MB decreased MARK4-mediated Tau phosphorylation in a dose dependent manner. Further studies revealed a two-fold mechanism by MB including down-regulation of MARK4 protein level through ubiquitin-proteasome pathway and inhibition of MARK4 kinase activity in vitro. This study highlights the importance of MARK4 as a viable target for Tauopathy and provides fresh insight into the complex mechanism used by MB to treat AD.
Collapse
Affiliation(s)
- Wenchao Sun
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| | - Seongsoo Lee
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA.,Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Xiaoran Huang
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| | - Song Liu
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| | - Mohammed Inayathullah
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| | - Kwang-Min Kim
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| | - Hongxiang Tang
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| | - J Wesson Ashford
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Jayakumar Rajadas
- Biomaterial and Advanced Drug Delivery Lab, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Majid T, Griffin D, Criss Z, Jarpe M, Pautler RG. Pharmocologic treatment with histone deacetylase 6 inhibitor (ACY-738) recovers Alzheimer's disease phenotype in amyloid precursor protein/presenilin 1 (APP/PS1) mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2015; 1:170-181. [PMID: 29854936 PMCID: PMC5975056 DOI: 10.1016/j.trci.2015.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction Current therapy for Alzheimer's disease (AD) focuses on delaying progression, illustrating the need for more effective therapeutic targets. Histone deacetylase 6 (HDAC6) modulates tubulin acetylation and has been implicated as an attractive target. HDAC6 is also elevated in postmortem tissue samples from patients. However, HDAC6 inhibitors have had limited success preclinically due to low blood-brain barrier penetration. Method We investigated a specific, potent HDAC6 inhibitor (ACY-738) in a mouse model of AD. We determined the effects of ACY-738 treatment on axonal transport, behavior, and pathology in amyloid precursor protein/presenilin 1 mice. Results We demonstrated improvements in in vivo axonal transport in two treatment groups as a result of ACY-738 brain levels. We also demonstrated recovery of short-term learning and memory deficits, hyperactivity, and modifications of tau and tubulin. Discussion Our findings implicate specific, targeted HDAC6 inhibitors as potential therapeutics and demonstrate that further investigations are warranted into effects of HDAC6 inhibitors in AD.
Collapse
Affiliation(s)
- Tabassum Majid
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Deric Griffin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Criss
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Robia G Pautler
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Zeng H, Wu X. Alzheimer's disease drug development based on Computer-Aided Drug Design. Eur J Med Chem 2015; 121:851-863. [PMID: 26415837 DOI: 10.1016/j.ejmech.2015.08.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/01/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the excessive deposition of amyloids in the brain. The pathological features mainly include the extracellular amyloid plaques and intracellular neurofibrillary tangles, which are the production of amyloid precursor protein (APP) processed by the α-, β- and γ-secretases. Based on the amyloid cascade hypotheses of AD, a large number of amyloid-β agents and secretase inhibitors against AD have been recently developed by using computational methods. This review article describes pathophysiology of AD and the structure of the Aβ plaques, β- and γ-secretases, and discusses the recent advances in the development of the amyloid agents for AD therapy and diagnosis by using Computer-Aided Drug Design approach.
Collapse
Affiliation(s)
- Huahui Zeng
- Science & Technology Department, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xiangxiang Wu
- Science & Technology Department, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones P, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 2015; 58:3131-43. [PMID: 25730262 PMCID: PMC4506206 DOI: 10.1021/jm501994d] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/18/2023]
Abstract
The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site.
Collapse
Affiliation(s)
- Hannes Falke
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Anja Becker
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadège Loaëc
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Olivier Lozach
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Samira Abu Jhaisha
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Walter Becker
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Peter
G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Knut Baumann
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Stefan Knapp
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Laurent Meijer
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Conrad Kunick
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Abstract
Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.
Collapse
Affiliation(s)
- Micah J Niphakis
- The Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
15
|
Gourdain S, Dairou J, Denhez C, Bui LC, Rodrigues-Lima F, Janel N, Delabar JM, Cariou K, Dodd RH. Development of DANDYs, new 3,5-diaryl-7-azaindoles demonstrating potent DYRK1A kinase inhibitory activity. J Med Chem 2013; 56:9569-85. [PMID: 24188002 DOI: 10.1021/jm401049v] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of 3,5-diaryl-1H-pyrrolo[2,3-b]pyridines were synthesized and evaluated for inhibition of DYRKIA kinase in vitro. Derivatives having hydroxy groups on the aryl moieties (2c, 2j-l) demonstrated high inhibitory potencies with Kis in the low nanomolar range. Their methoxy analogues were up to 100 times less active. Docking studies at the ATP binding site suggested that these compounds bind tightly to this site via a network of multiple H-bonds with the peptide backbone. None of the active compounds were cytotoxic to KB cells at 10(-6) M. Kinase profiling revealed that compound 2j showed 2-fold selectivity for DYRK1A with respect to DYRK2 and DYRK3.
Collapse
Affiliation(s)
- Stéphanie Gourdain
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, CNRS , Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marti G, Eparvier V, Morleo B, Ven JL, Apel C, Bodo B, Amand S, Dumontet V, Lozach O, Meijer L, Guéritte F, Litaudon M. Natural aristolactams and aporphine alkaloids as inhibitors of CDK1/cyclin B and DYRK1A. Molecules 2013; 18:3018-27. [PMID: 23467012 PMCID: PMC6269938 DOI: 10.3390/molecules18033018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022] Open
Abstract
In an effort to find potent inhibitors of the protein kinases DYRK1A and CDK1/Cyclin B, a systematic in vitro evaluation of 2,500 plant extracts from New Caledonia and French Guyana was performed. Some extracts were found to strongly inhibit the activity of these kinases. Four aristolactams and one lignan were purified from the ethyl acetate extracts of Oxandra asbeckii and Goniothalamus dumontetii, and eleven aporphine alkaloids were isolated from the alkaloid extracts of Siparuna pachyantha, S. decipiens, S. guianensis and S. poeppigii. Among these compounds, velutinam, aristolactam AIIIA and medioresinol showed submicromolar IC50 values on DYRK1A.
Collapse
Affiliation(s)
- Guillaume Marti
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Véronique Eparvier
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Barbara Morleo
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Jessica Le Ven
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Cécile Apel
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Bernard Bodo
- Muséum National d’Histoire Naturelle, UMR 7245 CNRS, 63 rue Buffon, Paris 75005, France; E-Mails: (B.B.); (S.A.)
| | - Séverine Amand
- Muséum National d’Histoire Naturelle, UMR 7245 CNRS, 63 rue Buffon, Paris 75005, France; E-Mails: (B.B.); (S.A.)
| | - Vincent Dumontet
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Olivier Lozach
- Protein Phosphorylation & Human Disease’ group, CNRS, Station Biologique, Place G. Teissier, Roscoff 29680, France; E-Mails: (O.L.); (L.M.)
| | - Laurent Meijer
- Protein Phosphorylation & Human Disease’ group, CNRS, Station Biologique, Place G. Teissier, Roscoff 29680, France; E-Mails: (O.L.); (L.M.)
- ManRos Therapeutics, Centre de Perharidy, Roscoff 29680, France
| | - Françoise Guéritte
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| | - Marc Litaudon
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (G.M.); (B.M.); (J.L.V.); (C.A.); (V.D.); (F.G.); (M.L.)
| |
Collapse
|
17
|
Sagar S, Kaur M, Radovanovic A, Bajic VB. Dragon exploration system on marine sponge compounds interactions. J Cheminform 2013; 5:11. [PMID: 23415072 PMCID: PMC3608955 DOI: 10.1186/1758-2946-5-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/14/2013] [Indexed: 01/13/2023] Open
Abstract
Background Natural products are considered a rich source of new chemical structures that may lead to the therapeutic agents in all major disease areas. About 50% of the drugs introduced in the market in the last 20 years were natural products/derivatives or natural products mimics, which clearly shows the influence of natural products in drug discovery. Results In an effort to further support the research in this field, we have developed an integrative knowledge base on Marine Sponge Compounds Interactions (Dragon Exploration System on Marine Sponge Compounds Interactions - DESMSCI) as a web resource. This knowledge base provides information about the associations of the sponge compounds with different biological concepts such as human genes or proteins, diseases, as well as pathways, based on the literature information available in PubMed and information deposited in several other databases. As such, DESMSCI is aimed as a research support resource for problems on the utilization of marine sponge compounds. DESMSCI allows visualization of relationships between different chemical compounds and biological concepts through textual and tabular views, graphs and relational networks. In addition, DESMSCI has built in hypotheses discovery module that generates potentially new/interesting associations among different biomedical concepts. We also present a case study derived from the hypotheses generated by DESMSCI which provides a possible novel mode of action for variolins in Alzheimer’s disease. Conclusion DESMSCI is the first publicly available (http://www.cbrc.kaust.edu.sa/desmsci) comprehensive resource where users can explore information, compiled by text- and data-mining approaches, on biological and chemical data related to sponge compounds.
Collapse
Affiliation(s)
- Sunil Sagar
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research center, Thuwal, 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|
18
|
Hikida T, Gamo NJ, Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin Ther Targets 2012; 16:1151-60. [PMID: 23130881 DOI: 10.1517/14728222.2012.719879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Many genetic studies have indicated that DISC1 is not merely "disrupted-in-schizophrenia," but is more generally implicated in various brain dysfunctions associated with aberrant neurodevelopment and intracellular signaling pathways. Thus, the DISC1 gene is mildly associated with a variety of brain disorders, including schizophrenia, mood disorders, and autism. This novel concept fits with the results from biological studies of DISC1, which include cell and animal models. AREAS COVERED We review the molecular structure and functions of DISC1, particularly those in conjunction with its important interactors. Functions of these interacting proteins are also introduced under the concept of the "DISC1 interactome." Finally, we discuss how the DISC1 interactome can provide potential therapeutic targets for mental illnesses. EXPERT OPINION Modulation of DISC1 stability and post-transcriptional modifications may be key targets to address DISC1-related pathology. In addition, modulation of DISC1 interactors and the mechanisms of their interactions with DISC1 may also provide drug targets. Disc1 rodent models can subsequently be used as templates for in vivo validations of compounds designed for DISC1 and its interacting proteins. Furthermore, these rodents will serve as genetic models for schizophrenia and related conditions, especially in conjunction with their pathologies during the neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Kyoto University School of Medicine, Medical Innovation Center, Kyoto, Japan.
| | | | | |
Collapse
|
19
|
Vázquez-Cedeira M, Barcia-Sanjurjo I, Sanz-García M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 2011; 6:e23235. [PMID: 21829721 PMCID: PMC3150407 DOI: 10.1371/journal.pone.0023235] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 01/13/2023] Open
Abstract
Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Iria Barcia-Sanjurjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
20
|
Novel screening cascade identifies MKK4 as key kinase regulating Tau phosphorylation at Ser422. Mol Cell Biochem 2011; 357:199-207. [PMID: 21638028 DOI: 10.1007/s11010-011-0890-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Phosphorylation of Tau at serine 422 promotes Tau aggregation. The kinase that is responsible for this key phosphorylation event has so far not been identified but could be a potential drug target for Alzheimer's disease. We describe here an assay strategy to identify this kinase. Using a combination of screening a library of 65'000 kinase inhibitors and in vitro inhibitor target profiling of the screening hits using the Ambit kinase platform, MKK4 was identified as playing a key role in Tau-S422 phosphorylation in human neuroblastoma cells.
Collapse
|
21
|
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in neuronal development and adult brain physiology. Higher than normal levels of DYRK1A are associated with the pathology of neurodegenerative diseases and have been implicated in some neurobiological alterations of Down syndrome, such as mental retardation. It is therefore important to understand the molecular mechanisms that control the activity of DYRK1A. Here we review the current knowledge about the initial self-activation of DYRK1A by tyrosine autophosphorylation and propose that this mechanism presents an ancestral feature of the CMGC group of kinases. However, tyrosine phosphorylation does not appear to regulate the enzymatic activity of DYRK1A. Control of DYRK1A may take place on the level of gene expression, interaction with regulatory proteins and regulated nuclear translocation. Finally, we compare the properties of small molecule inhibitors that target DYRK1A and evaluate their potential application and limitations. The β-carboline alkaloid harmine is currently the most selective and potent inhibitor of DYRK1A and has proven very useful in cellular assays.
Collapse
Affiliation(s)
- Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
22
|
Arnost M, Pierce A, Haar ET, Lauffer D, Madden J, Tanner K, Green J. 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3β. Bioorg Med Chem Lett 2010; 20:1661-4. [PMID: 20138514 DOI: 10.1016/j.bmcl.2010.01.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 01/12/2023]
|
23
|
Panigrahi K, Eggen M, Maeng JH, Shen Q, Berkowitz DB. The alpha,alpha-difluorinated phosphonate L-pSer-analogue: an accessible chemical tool for studying kinase-dependent signal transduction. CHEMISTRY & BIOLOGY 2009; 16:928-36. [PMID: 19778720 PMCID: PMC2766077 DOI: 10.1016/j.chembiol.2009.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/24/2009] [Accepted: 08/03/2009] [Indexed: 11/21/2022]
Abstract
This overview focuses on the (alpha,alpha-difluoromethylene)phosphonate mimic of phosphoserine (pCF(2)Ser) and its application to the study of kinase-mediated signal transduction-pathways of great interest to drug development. The most versatile modes of access to these chemical biological tools are discussed, organized by method of PCF(2)-C bond formation. The pCF(2)-Ser mimic may be site-specifically incorporated into peptides (SPPS) and proteins (expressed protein ligation). This isopolar, dianionic pSer mimic results in a "constitutive phosphorylation" phenotype and is seen to support native protein-protein interactions that depend on serine phosphorylation. Signal transduction pathways studied with this chemical biological approach include the regulation of p53 tumor suppressor protein activity and of melatonin production. Given these successes, the future is bright for the use of such "teflon phospho-amino acid mimics" to map kinase-based signaling pathways.
Collapse
Affiliation(s)
- Kaushik Panigrahi
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - MariJean Eggen
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jun-Ho Maeng
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Quanrong Shen
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | | |
Collapse
|
24
|
Affiliation(s)
- Seol-Heui Han
- Department of Neurology, Konkuk University School of Medicine Center for Geriatric Neuroscience Research, IBST, Konkuk University, Korea.
| |
Collapse
|