1
|
Kumar A, Gupta O, Bhatia R, Monga V. Impact of Cannabinoid Receptors in the Design of Therapeutic Agents against Human Ailments. Curr Top Med Chem 2023; 23:1807-1834. [PMID: 37132103 DOI: 10.2174/1568026623666230502120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/04/2023]
Abstract
The Cannabinoid (CB) signalling cascade is widely located in the human body and is associated with several pathophysiological processes. The endocannabinoid system comprises cannabinoid receptors CB1 and CB2, which belong to G-protein Coupled Receptors (GPCRs). CB1 receptors are primarily located on nerve terminals, prohibiting neurotransmitter release, whereas CB2 are present predominantly on immune cells, causing cytokine release. The activation of CB system contributes to the development of several diseases which might have lethal consequences, such as CNS disorders, cancer, obesity, and psychotic disorders on human health. Clinical evidence revealed that CB1 receptors are associated with CNS ailments such as Alzheimer's disease, Huntington's disease, and multiple sclerosis, whereas CB2 receptors are primarily connected with immune disorders, pain, inflammation, etc. Therefore, cannabinoid receptors have been proved to be promising targets in therapeutics and drug discovery. Experimental and clinical outcomes have disclosed the success story of CB antagonists, and several research groups have framed newer compounds with the binding potential to these receptors. In the presented review, we have summarized variously reported heterocycles with CB receptor agonistic/antagonistic properties against CNS disorders, cancer, obesity, and other complications. The structural activity relationship aspects have been keenly described along with enzymatic assay data. The specific outcomes of molecular docking studies have also been highlighted to get insights into the binding patterns of the molecules to CB receptors.
Collapse
Affiliation(s)
- Ankush Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - VikramDeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
2
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
3
|
Yang Y, Zhao Y, Li W, Wu Y, Wang X, Wang Y, Liu T, Ye T, Xie Y, Cheng Z, He J, Bai P, Zhang Y, Ouyang L. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. Eur J Med Chem 2020; 197:112311. [PMID: 32339855 DOI: 10.1016/j.ejmech.2020.112311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in the world, which is characterized by liver fat accumulation unrelated to excessive drinking. Indeed, it attracts growing attention and becomes a global health problem. Due to the complexity of the NAFLD pathogenic mechanism, no related drugs were approved by Food and Drug Administration (FDA) till now. However, it is encouraging that a series of candidate drugs have entered the clinical trial stage with expectation to treat NAFLD. In this review, we summarized the main pathways and pathogenic mechanisms of NAFLD, as well as introduced the main potential therapeutic targets and the corresponding compounds involved in metabolism, inflammation and fibrosis. Furthermore, we also discuss the progress of these compounds, such as drug design and optimization, the choice of pharmacological properties and druglikeness, and the analysis of structure-activity relationship. This review offers a medium on future drug design and development, to be beneficial to relevant studies.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenzhen Li
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuyao Wu
- West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yijie Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tingmei Liu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|
4
|
Exploring the Ligand Efficacy of Cannabinoid Receptor 1 (CB1) using Molecular Dynamics Simulations. Sci Rep 2018; 8:13787. [PMID: 30213978 PMCID: PMC6137198 DOI: 10.1038/s41598-018-31749-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/23/2018] [Indexed: 11/08/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a promising therapeutic target for a variety of disorders. Distinct efficacy profiles showed different therapeutic effects on CB1 dependent on three classes of ligands: agonists, antagonists, and inverse agonists. To discriminate the distinct efficacy profiles of the ligands, we carried out molecular dynamics (MD) simulations to identify the dynamic behaviors of inactive and active conformations of CB1 structures with the ligands. In addition, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was applied to analyze the binding free energy decompositions of the CB1-ligand complexes. With these two methods, we found the possibility that the three classes of ligands can be discriminated. Our findings shed light on the understanding of different efficacy profiles of ligands by analyzing the structural behaviors of intact CB1 structures and the binding energies of ligands, thereby yielding insights that are useful for the design of new potent CB1 drugs.
Collapse
|
5
|
Seltzman HH, Maitra R, Bortoff K, Henson J, Reggio PH, Wesley D, Tam J. Metabolic Profiling of CB1 Neutral Antagonists. Methods Enzymol 2017; 593:199-215. [PMID: 28750803 DOI: 10.1016/bs.mie.2017.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PIMSR is among the first neutral antagonists for the CB1R and was demonstrated pharmacologically to bind to the CB1R, yet not alter calcium flux. It was further shown computationally to be able to stabilize both the active and inactive states of CB1R revealing the molecular interactions that mechanistically afford the property of neutral antagonism. PIMSR shows dramatic positive effects in reducing weight, food intake, and adiposity as well as in improving glycemic control and lipid homeostasis in high-fat diet-induced obese mice, but also shows increased ALT and liver weight as markers of liver injury with chronic administration. Further, in a separate study, 3-day administration of PIMSR in C57BL/6J mice, hepatic steatosis from an acute administration of high of ethanol was significantly reduced. Also, it partially prevented alcohol-induced increases in ALT, AST, and LDH. The differences in ALT levels in obese and nonobese mice under different test paradigms are unlikely to be due to neutral antagonism itself since other neutral antagonists (AM6545) do not exhibit liver injury. The brain levels of low micromolar would support significant brain CB1 receptor occupancy (re: Ki=17nM), thus potentially including both CNS and peripheral influences on the observed weight loss. Overall, these studies suggest that marked improvements in aspects of metabolic disease and alcoholic steatosis can be realized with CB1R neutral antagonists and hence warrants the exploration of further members of this class of cannabinoid ligands.
Collapse
Affiliation(s)
- Herbert H Seltzman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, United States.
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, United States
| | | | | | - Patricia H Reggio
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Daniel Wesley
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, United States
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Hernández-Vázquez E, Aguayo-Ortiz R, Ramírez-Espinosa JJ, Estrada-Soto S, Hernández-Luis F. Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model. Eur J Med Chem 2013; 69:10-21. [DOI: 10.1016/j.ejmech.2013.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 01/22/2023]
|
7
|
Ligand-specific homology modeling of human cannabinoid (CB1) receptor. J Mol Graph Model 2012; 38:155-64. [PMID: 23079645 DOI: 10.1016/j.jmgm.2012.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 12/20/2022]
Abstract
Cannabinoid (CB1) receptor is a therapeutic drug target, and its structure and conformational changes after ligand binding are of great interest. To study the protein conformations in ligand bound state and assist in drug discovery, CB1 receptor homology models are needed for computer-based ligand screening. The known CB1 ligands are highly diverse structurally, so CB1 receptor may undergo considerable conformational changes to accept different ligands, which is challenging for molecular docking methods. To account for the flexibility of CB1 receptor, we constructed four CB1 receptor models based on four structurally distinct ligands, HU-210, ACEA, WIN55212-2 and SR141716A, using the newest X-ray crystal structures of human β₂ adrenergic receptor and adenosine A(2A) receptor as templates. The conformations of these four CB1-ligand complexes were optimized by molecular dynamics (MD) simulations. The models revealed interactions between CB1 receptor and known binders suggested by experiments and could successfully discriminate known ligands and non-binders in our docking assays. MD simulations were used to study the most flexible ligand, ACEA, in its free and bound states to investigate structural mobility achieved by the rearrangement of the fatty acid chain. Our models may capture important conformational changes of CB1 receptor to help improve accuracy in future CB1 drug screening.
Collapse
|
8
|
Novel selective antagonist of the cannabinoid CB1 receptor, MJ15, with prominent anti-obesity effect in rodent models. Eur J Pharmacol 2010; 637:178-85. [PMID: 20380831 DOI: 10.1016/j.ejphar.2010.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/21/2022]
Abstract
MJ15, a novel cannabinoid CB(1) receptor selective antagonist was discovered. In receptor binding assays, MJ15 displayed a high affinity for rat cannabinoid CB(1) receptor (K(i)=27.2 pM, and IC(50)=118.9 pM), but a much lower affinity for rat cannabinoid CB(2) receptor (only 46% inhibition at 10 microM). At the cellular level, the IC(50) values against activation of cannabinoid CB(1) and CB(2) receptors induced by Win55212-2 in specially designed EGFP-CB(1)_U2OS and EGFP-CB(2)_U2OS cells were 0.11 microM and >10 microM, respectively. In addition, MJ15 dose-dependently blocked Win55212-2 mediated increase of intracellular Ca(2+) levels in hippocampal cells and reversed the inhibitory effects of cannabinoid CB(1) receptor agonist on forskolin-stimulated adenylyl cyclase activity in CHO cells expressing the human cannabinoid CB(1) receptor. In animal experiments, MJ15 demonstrated remarkable effects from 20 to 40 mg/kg, including promoted the small intestine peristalsis in ICR mice and inhibited food intake and body weight increase in diet-induced obesity (DIO) rat and mouse. 40 mg/kg MJ15 significantly reduced food intake at initial 2 weeks of treatment, prevented the increase of body weight and adipose by 46% and 28% respectively in DIO rats, and reduced body weight and adipose gain by 70% and 23% respectively in early onset obesity DIO mice after 4 weeks treatment. Meanwhile, dyslipidemia were ameliorated in both models. Taken together the in vitro and in vivo data, MJ15 is demonstrated to be a potent and selective cannabinoid CB(1) receptor antagonist and holds a prominent potency in obesity and dyslipidemia treatment.
Collapse
|