1
|
Zarafu I, Matei L, Bleotu C, Ionita P, Tatibouët A, Păun A, Nicolau I, Hanganu A, Limban C, Nuta DC, Nemeș RM, Diaconu CC, Radulescu C. Synthesis, Characterization, and Biologic Activity of New Acyl Hydrazides and 1,3,4-Oxadiazole Derivatives. Molecules 2020; 25:3308. [PMID: 32708236 PMCID: PMC7396991 DOI: 10.3390/molecules25143308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023] Open
Abstract
Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis, cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8, and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54% of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3 and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug metabolism indicates that synthesized compounds could be metabolized via other pathways than NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further studies on the action mechanism of these compounds on the cell cycle may bring new information regarding their biological activity.
Collapse
Affiliation(s)
- Irina Zarafu
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Lilia Matei
- “Stefan S Nicolau” Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (L.M.); (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), Life, Environmental and Earth Sciences Division, University of Bucharest, 060023 Bucharest, Romania;
| | - Coralia Bleotu
- “Stefan S Nicolau” Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (L.M.); (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), Life, Environmental and Earth Sciences Division, University of Bucharest, 060023 Bucharest, Romania;
| | - Petre Ionita
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Arnaud Tatibouët
- Institute of Organic and Analytical Chemistry ICOA-UMR7311, University of Orleans, 45067 Orleans, France;
| | - Anca Păun
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Ioana Nicolau
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Anamaria Hanganu
- Research Institute of the University of Bucharest (ICUB), Life, Environmental and Earth Sciences Division, University of Bucharest, 060023 Bucharest, Romania;
- Institute of Organic Chemistry “C.D. Nenitescu” of the Romanian Academy, 060023 Bucharest, Romania
| | - Carmen Limban
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.L.); (D.C.N.)
| | - Diana Camelia Nuta
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.L.); (D.C.N.)
| | - Roxana Maria Nemeș
- National Institute of Pneumology Marius Nasta, 050152 Bucharest, Romania;
| | - Carmen Cristina Diaconu
- “Stefan S Nicolau” Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (L.M.); (C.B.); (C.C.D.)
| | - Cristiana Radulescu
- Faculty of Sciences and Arts, “Valahia” University of Targoviste, 130004 Targoviste, Romania
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13004 Targoviste, Romania
| |
Collapse
|
2
|
Jiang D, Wang GQ, Liu X, Zhang Z, Feng LS, Liu ML. Isatin Derivatives with Potential Antitubercular Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology; Xianning People's Republic of China
| | - Gang-Qiang Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology; Xianning People's Republic of China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co. Ltd; Xianju, Zhejiang 317300 People's Republic of China
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology; Wuhan, Hubei 430081 People's Republic of China
| | - Zhenbin Zhang
- Zhejiang Xianju Junye Pharmaceutical Co. Ltd; Xianju, Zhejiang 317300 People's Republic of China
| | | | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100050 People's Republic of China
| |
Collapse
|
3
|
Matei L, Bleotu C, Baciu I, Diaconu CC, Hanganu A, Banu O, Ionita P, Paun A, Tatibouët A, Zarafu I. Synthesis and biological activities of some new isonicotinic acid 2-(2-hydroxy-8-substituted-tricyclo[7.3.1.0(2.7)]tridec-13-ylidene)-hydrazides. Bioorg Med Chem 2015; 23:401-410. [PMID: 25557899 DOI: 10.1016/j.bmc.2014.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 11/15/2022]
Abstract
A series of several new isoniazid derivatives, isonicotinic acid 2-(2-hydroxy-8-substituted-tricyclo[7.3.1.0(2.7)]tridec-13-ylidene)-hydrazides, were synthesized and fully characterized. These new isoniazid derivatives were studied regarding their antibacterial activity and cytotoxicity, as well as their influences on some metabolizing enzymes. The best anti-mycobacterial activity was observed in the case of compounds containing alkyl side chains in the 8 position of tricyclo[7.3.1.0(2.7)]tridec-13-ylidene group. On contrary, the antimicrobial activity of these new compounds against various non-tuberculosis strains showed the best activity to be with the phenyl side chain of compound 6. It proved also to be the most toxic, inducing apoptosis and blocking the cell cycle in G0/G1 phase. The cell cycle was blocked in G0/G1 phase also by compound 3, but this compound did not show any toxicity. All compounds induced the expression of NAT1 and NAT2 genes in HT-29 cell line, and the expression of CYP1A1 in HT-29 and HCT-8 cell lines. The expression level of CYP3A4 was increased by compounds 1, 6 and 7 in HCT-8 cells. These results indicated that the activation of other metabolizing pathways, apart from those of isoniazid, take place. It might also point out the possibility of an increased isoniazid acetylation ratio by co-administration with new compounds in slow acetylators.
Collapse
Affiliation(s)
- Lilia Matei
- Stefan S Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania; Faculty of Chemistry, University of Bucharest, Romania
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Ion Baciu
- Faculty of Chemistry, University of Bucharest, Romania
| | | | | | - Otilia Banu
- Institute of Cardiovascular Diseases Prof. Dr. C.C. Iliescu, Microbiology Department, Bucharest, Romania
| | - Petre Ionita
- Faculty of Chemistry, University of Bucharest, Romania
| | - Anca Paun
- Faculty of Chemistry, University of Bucharest, Romania
| | | | - Irina Zarafu
- Faculty of Chemistry, University of Bucharest, Romania.
| |
Collapse
|
4
|
Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JAL, Mac Kenzie W, Peloquin CA. Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother 2014; 69:1079-85. [PMID: 24343893 PMCID: PMC4014856 DOI: 10.1093/jac/dkt483] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/28/2013] [Accepted: 11/14/2013] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Latent tuberculosis infection and tuberculosis disease are prevalent worldwide. However, antimycobacterial rifamycins have drug interactions with many antiretroviral drugs. We evaluated the effect of rifapentine on the pharmacokinetic properties of raltegravir. METHODS In this open-label, fixed-sequence, three-period study, 21 healthy volunteers were given: raltegravir alone (400 mg every 12 h for 4 days) on days 1-4 of Period 1; rifapentine (900 mg once weekly for 3 weeks) on days 1, 8 and 15 of Period 2 and raltegravir (400 mg every 12 h for 4 days) on days 12-15 of Period 2; and rifapentine (600 mg once daily for 10 scheduled doses) on days 1, 4-8 and 11-14 of Period 3 and raltegravir (400 mg every 12 h for 4 days) on days 11-14 of Period 3. Plasma raltegravir concentrations were measured. ClinicalTrials.gov database: NCT00809718. RESULTS In 16 subjects who completed the study, coadministration of raltegravir with rifapentine (900 mg once weekly; Period 2) compared with raltegravir alone resulted in the geometric mean of the raltegravir AUC from 0 to 12 h (AUC0-12) being increased by 71%; the peak concentration increased by 89% and the trough concentration decreased by 12%. Coadministration of raltegravir with rifapentine in Period 3 did not change the geometric mean of the raltegravir AUC0-12 or the peak concentration, but it decreased the trough concentration by 41%. Raltegravir coadministered with rifapentine was generally well tolerated. CONCLUSIONS The increased raltegravir exposure observed with once-weekly rifapentine was safe and tolerable. Once-weekly rifapentine can be used with raltegravir to treat latent tuberculosis infection in patients who are infected with HIV.
Collapse
Affiliation(s)
- Marc Weiner
- Medical Service, Department of Veterans Affairs Medical Center, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Eric F. Egelund
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Melissa Engle
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Thomas J. Prihoda
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jonathan A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| | - William Mac Kenzie
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|