1
|
Wang Z, Deisboeck TS. Dynamic Targeting in Cancer Treatment. Front Physiol 2019; 10:96. [PMID: 30890944 PMCID: PMC6413712 DOI: 10.3389/fphys.2019.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
With the advent of personalized medicine, design and development of anti-cancer drugs that are specifically targeted to individual or sets of genes or proteins has been an active research area in both academia and industry. The underlying motivation for this approach is to interfere with several pathological crosstalk pathways in order to inhibit or at the very least control the proliferation of cancer cells. However, after initially conferring beneficial effects, if sub-lethal, these artificial perturbations in cell function pathways can inadvertently activate drug-induced up- and down-regulation of feedback loops, resulting in dynamic changes over time in the molecular network structure and potentially causing drug resistance as seen in clinics. Hence, the targets or their combined signatures should also change in accordance with the evolution of the network (reflected by changes to the structure and/or functional output of the network) over the course of treatment. This suggests the need for a "dynamic targeting" strategy aimed at optimizing tumor control by interfering with different molecular targets, at varying stages. Understanding the dynamic changes of this complex network under various perturbed conditions due to drug treatment is extremely challenging under experimental conditions let alone in clinical settings. However, mathematical modeling can facilitate studying these effects at the network level and beyond, and also accelerate comparison of the impact of different dosage regimens and therapeutic modalities prior to sizeable investment in risky and expensive clinical trials. A dynamic targeting strategy based on the use of mathematical modeling can be a new, exciting research avenue in the discovery and development of therapeutic drugs.
Collapse
Affiliation(s)
- Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S Deisboeck
- Department of Radiology, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
2
|
Oduola WO, Li X. Multiscale Tumor Modeling With Drug Pharmacokinetic and Pharmacodynamic Profile Using Stochastic Hybrid System. Cancer Inform 2018; 17:1176935118790262. [PMID: 30083052 PMCID: PMC6073835 DOI: 10.1177/1176935118790262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/16/2018] [Indexed: 12/16/2022] Open
Abstract
Effective cancer treatment strategy requires an understanding of cancer behavior and development across multiple temporal and spatial scales. This has resulted into a growing interest in developing multiscale mathematical models that can simulate cancer growth, development, and response to drug treatments. This study thus investigates multiscale tumor modeling that integrates drug pharmacokinetic and pharmacodynamic (PK/PD) information using stochastic hybrid system modeling framework. Specifically, (1) pathways modeled by differential equations are adopted for gene regulations at the molecular level; (2) cellular automata (CA) model is proposed for the cellular and multicellular scales. Markov chains are used to model the cell behaviors by taking into account the gene expression levels, cell cycle, and the microenvironment. The proposed model enables the prediction of tumor growth under given molecular properties, microenvironment conditions, and drug PK/PD profile. Simulation results demonstrate the effectiveness of the proposed approach and the results agree with observed tumor behaviors.
Collapse
Affiliation(s)
- Wasiu Opeyemi Oduola
- Department of Electrical and Computer Engineering (ECE), Prairie View A&M University, Prairie View, TX, USA
| | - Xiangfang Li
- Department of Electrical and Computer Engineering (ECE), Prairie View A&M University, Prairie View, TX, USA
| |
Collapse
|
3
|
Li XL, Oduola WO, Qian L, Dougherty ER. Integrating Multiscale Modeling with Drug Effects for Cancer Treatment. Cancer Inform 2016; 14:21-31. [PMID: 26792977 PMCID: PMC4712979 DOI: 10.4137/cin.s30797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/08/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.
Collapse
Affiliation(s)
- Xiangfang L. Li
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - Wasiu O. Oduola
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - Lijun Qian
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA
| | - Edward R. Dougherty
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Brocato T, Dogra P, Koay EJ, Day A, Chuang YL, Wang Z, Cristini V. Understanding Drug Resistance in Breast Cancer with Mathematical Oncology. CURRENT BREAST CANCER REPORTS 2014; 6:110-120. [PMID: 24891927 PMCID: PMC4039558 DOI: 10.1007/s12609-014-0143-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemotherapy is mainstay of treatment for the majority of patients with breast cancer, but results in only 26% of patients with distant metastasis living 5 years past treatment in the United States, largely due to drug resistance. The complexity of drug resistance calls for an integrated approach of mathematical modeling and experimental investigation to develop quantitative tools that reveal insights into drug resistance mechanisms, predict chemotherapy efficacy, and identify novel treatment approaches. This paper reviews recent modeling work for understanding cancer drug resistance through the use of computer simulations of molecular signaling networks and cancerous tissues, with a particular focus on breast cancer. These mathematical models are developed by drawing on current advances in molecular biology, physical characterization of tumors, and emerging drug delivery methods (e.g., nanotherapeutics). We focus our discussion on representative modeling works that have provided quantitative insight into chemotherapy resistance in breast cancer and how drug resistance can be overcome or minimized to optimize chemotherapy treatment. We also discuss future directions of mathematical modeling in understanding drug resistance.
Collapse
Affiliation(s)
- Terisse Brocato
- Department of Chemical and Nuclear Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Prashant Dogra
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Armin Day
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Yao-Li Chuang
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Vittorio Cristini
- Department of Chemical and Nuclear Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Wang Z, Deisboeck TS. Mathematical modeling in cancer drug discovery. Drug Discov Today 2013; 19:145-50. [PMID: 23831857 DOI: 10.1016/j.drudis.2013.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Mathematical models have the potential to help discover new therapeutic targets and treatment strategies. In this review, we discuss how the latest developments in mathematical modeling can provide useful context for the rational design, validation and prioritization of novel cancer drug targets and their combinations. We give special attention to two modeling approaches: network-based modeling and multiscale modeling, because they have begun to show promise in facilitating the process of effective cancer drug discovery. Both modeling approaches are integrated with a variety of experimental methods to ensure proper parameterization and to maximize their predictive value. We also discuss several challenges faced in modeling-based drug discovery.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
6
|
Wang Z, Sagotsky J, Taylor T, Shironoshita P, Deisboeck TS. Accelerating cancer systems biology research through Semantic Web technology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012. [PMID: 23188758 DOI: 10.1002/wsbm.1200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
7
|
Chakrabarti A, Verbridge S, Stroock AD, Fischbach C, Varner JD. Multiscale models of breast cancer progression. Ann Biomed Eng 2012; 40:2488-500. [PMID: 23008097 DOI: 10.1007/s10439-012-0655-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022]
Abstract
Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. This series of events is highly complex, involving multiple cell types interacting with (and shaping) the microenvironment. Multiscale mathematical models have emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes occurring on the systemic scale, with the molecular signaling processes occurring on the cellular and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling across multiple length scales, with an emphasis on the integration of intracellular signal transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis. Then, we summarized the development of tissue engineering platforms which could provide high-fidelity ex vivo experimental models to identify and validate multiscale simulations. Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular networks with the microenvironment. We present models of a variety of cancers, in addition to breast cancer specific models. Taken together, we expect as the sophistication of the simulations increase, that multiscale modeling and bottom-up agent-based models in particular will become an increasingly important platform technology for basic scientific discovery, as well as the identification and validation of potentially novel therapeutic targets.
Collapse
Affiliation(s)
- Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, 244 Olin Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insights in the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community.
Collapse
Affiliation(s)
- Thomas S Deisboeck
- Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Zhihui Wang
- Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Paul Macklin
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Vittorio Cristini
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Chemical and Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131]
| |
Collapse
|
9
|
Azmi AS, Ali S, Banerjee S, Bao B, Maitah MN, Padhye S, Philip PA, Mohammad RM, Sarkar FH. Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res 2011; 3:374-382. [PMID: 21904657 PMCID: PMC3158739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/17/2011] [Indexed: 05/31/2023]
Abstract
Systems biology and molecular network modeling are important tools that are finding application in anti-cancer drug discovery. These technologies can be utilized to map and evaluate the entire set of pathways modulated by drugs in cancer cells without loosing key details. Such integrated approaches are especially useful in understanding the mechanism of action of agents that do not have a defined target. Our novel compound CDF (a synthetic analogue of curcumin), is one such multi-targeted agent with proven anti-cancer activity in vitro and in vivo. However, its mechanism of action is not fully understood, and thus a thorough analysis of key pathways targeted by CDF would be important for developing targeted and tailored therapy in the future. Applying Ingenuity Pathway Analysis (IPA), we have mapped the pathways altered by CDF treatment of BxPC-3 pancreatic cancer (PC) cells. Illumina HT-12 microar-rays were performed on RNA extracted from CDF treated cells. IPA analysis of gene expression at early time point (24 hrs) revealed deregulation of genes in the c-Myc hub. Western blot analysis validated the activation of c-Myc, p73 and its downstream pro-apoptotic effector Bax with simultaneous down-regulation of Bcl-2 in two distinct pancreatic cancer cell lines (BxPC-3 and Colo-357). In order to further delineate the role of c-Myc in inducing apoptosis, siRNA silencing technology was used. As expected, c-Myc siRNA knockdown resulted in abrogation of the growth inhibitory and apoptotic potential of CDF. In conclusion, our results demonstrate a novel c-Myc driven apoptotic network activated by CDF in PC cells that is independent of wild-type p53, and thus warrants further investigation on the clinical utility of CDF.
Collapse
|