1
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
2
|
Tuyiringire N, Deyno S, Weisheit A, Tolo CU, Tusubira D, Munyampundu JP, Ogwang PE, Muvunyi CM, Heyden YV. Three promising antimycobacterial medicinal plants reviewed as potential sources of drug hit candidates against multidrug-resistant tuberculosis. Tuberculosis (Edinb) 2020; 124:101987. [DOI: 10.1016/j.tube.2020.101987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/03/2023]
|
3
|
Tuyiringire N, Tusubira D, Munyampundu JP, Tolo CU, Muvunyi CM, Ogwang PE. Application of metabolomics to drug discovery and understanding the mechanisms of action of medicinal plants with anti-tuberculosis activity. Clin Transl Med 2018; 7:29. [PMID: 30270413 PMCID: PMC6165828 DOI: 10.1186/s40169-018-0208-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 11/10/2022] Open
Abstract
Human tuberculosis (TB) is amongst the oldest and deadliest human bacterial diseases that pose major health, social and economic burden at a global level. Current regimens for TB treatment are lengthy, expensive and ineffective to emerging drug resistant strains. Thus, there is an urgent need for identification and development of novel TB drugs and drug regimens with comprehensive and specific mechanisms of action. Many medicinal plants are traditionally used for TB treatment. While some of their phytochemical composition has been elucidated, their mechanisms of action are not well understood. Insufficient knowledge on Mycobacterium tuberculosis (M.tb) biology and the complex nature of its infection limit the effectiveness of current screening-based methods used for TB drug discovery. Nonetheless, application of metabolomics tools within the 'omics' approaches, could provide an alternative method of elucidating the mechanism of action of medicinal plants. Metabolomics aims at high throughput detection, quantification and identification of metabolites in biological samples. Changes in the concentration of specific metabolites in a biological sample indicate changes in the metabolic pathways. In this paper review and discuss novel methods that involve application of metabolomics to drug discovery and the understanding of mechanisms of action of medicinal plants with anti-TB activity. Current knowledge on TB infection, anti-TB drugs and mechanisms of action are also included. We further highlight metabolism of M. tuberculosis and the potential drug targets, as well as current approaches in the development of anti-TB drugs.
Collapse
Affiliation(s)
- Naasson Tuyiringire
- Pharm-BioTechnology and Traditional Medicine Centre (PHARMBIOTRAC), Mbarara University of Science & Technology, P.O. Box, 1410 Mbarara, Uganda
- College of Medicine and Health Sciences, University of Rwanda, University Avenue, P.O. Box 56, Butare, Rwanda
| | - Deusdedit Tusubira
- Pharm-BioTechnology and Traditional Medicine Centre (PHARMBIOTRAC), Mbarara University of Science & Technology, P.O. Box, 1410 Mbarara, Uganda
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5020 Bergen, Norway
| | - Jean-Pierre Munyampundu
- School of Science, College of Science and Technology, University of Rwanda, Avenue de l’Armée, P.O. Box 3900, Kigali, Rwanda
| | - Casim Umba Tolo
- Pharm-BioTechnology and Traditional Medicine Centre (PHARMBIOTRAC), Mbarara University of Science & Technology, P.O. Box, 1410 Mbarara, Uganda
| | - Claude M. Muvunyi
- College of Medicine and Health Sciences, University of Rwanda, University Avenue, P.O. Box 56, Butare, Rwanda
| | - Patrick Engeu Ogwang
- Pharm-BioTechnology and Traditional Medicine Centre (PHARMBIOTRAC), Mbarara University of Science & Technology, P.O. Box, 1410 Mbarara, Uganda
| |
Collapse
|
4
|
Microdosing, isotopic labeling, radiotracers and metabolomics: relevance in drug discovery, development and safety. Bioanalysis 2017; 9:1913-1933. [PMID: 29171759 DOI: 10.4155/bio-2017-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review discusses the use of stable (13C, 2D) or radioactive isotopes (14C, 11C, 18F, 131I, 64Cu, 68Ga) incorporated into the molecular structure of new drug entities for the purpose of pharmacokinetic or -dynamic studies. Metabolite in safety testing requires the administration of pharmacologically active doses. In such studies, radiotracers find application mainly in preclinical animal investigations, whereby LC-MS/MS is used to identify metabolite structure and drug-related effects. In contrast, first-in-human metabolite studies have to be carried out at nonpharmacological doses not exceeding 100 μg (microdose), which is generally too low for metabolite detection by LC-MS/MS. This short-coming can be overcome by specific radio- or isotopic labeling of the drug of interest and measurements using accelerator mass spectroscopy, single-photon emission computed tomography and positron emission tomography. Such combined radioisotope-based approaches permit Phase 0, first-in-human metabolite study.
Collapse
|
5
|
O'Sullivan A, Henrick B, Dixon B, Barile D, Zivkovic A, Smilowitz J, Lemay D, Martin W, German JB, Schaefer SE. 21st century toolkit for optimizing population health through precision nutrition. Crit Rev Food Sci Nutr 2017; 58:3004-3015. [PMID: 28678528 DOI: 10.1080/10408398.2017.1348335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Scientific, technological, and economic progress over the last 100 years all but eradicated problems of widespread food shortage and nutrient deficiency in developed nations. But now society is faced with a new set of nutrition problems related to energy imbalance and metabolic disease, which require new kinds of solutions. Recent developments in the area of new analytical tools enable us to systematically study large quantities of detailed and multidimensional metabolic and health data, providing the opportunity to address current nutrition problems through an approach called Precision Nutrition. This approach integrates different kinds of "big data" to expand our understanding of the complexity and diversity of human metabolism in response to diet. With these tools, we can more fully elucidate each individual's unique phenotype, or the current state of health, as determined by the interactions among biology, environment, and behavior. The tools of precision nutrition include genomics, metabolomics, microbiomics, phenotyping, high-throughput analytical chemistry techniques, longitudinal tracking with body sensors, informatics, data science, and sophisticated educational and behavioral interventions. These tools are enabling the development of more personalized and predictive dietary guidance and interventions that have the potential to transform how the public makes food choices and greatly improve population health.
Collapse
Affiliation(s)
| | - Bethany Henrick
- b Foods for Health Institute , University of California , Davis , USA
| | - Bonnie Dixon
- b Foods for Health Institute , University of California , Davis , USA
| | - Daniela Barile
- c Food Science and Technology , University of California , Davis , USA
| | - Angela Zivkovic
- d Department of Nutrition , University of California , Davis , USA
| | - Jennifer Smilowitz
- b Foods for Health Institute , University of California , Davis , USA.,e USDA-ARS Western Human Nutrition Research Center , Davis , USA
| | - Danielle Lemay
- f Nutritional Biology , University of California , Davis , USA
| | | | - J Bruce German
- h Department of Food Science and Technology , University of California , Davis , USA
| | | |
Collapse
|
6
|
Reily MD, Tymiak AA. Metabolomics in the pharmaceutical industry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 13:25-31. [PMID: 26190680 DOI: 10.1016/j.ddtec.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 01/11/2023]
Abstract
Metabolomics has roots in the pharmaceutical industry that go back nearly three decades. Initially focused on applications in toxicology and disease pathology, more recent academic and commercial efforts have helped advance metabolomics as a tool to reveal the molecular basis of biological processes and pharmacological responses to drugs. This article will discuss areas where metabolomic technologies and applications are poised to have the greatest impact in the discovery and development of pharmaceuticals.
Collapse
Affiliation(s)
- Michael D Reily
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Co., Princeton, NJ, USA.
| | - Adrienne A Tymiak
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Co., Princeton, NJ, USA
| |
Collapse
|
7
|
Wang Y, Borlak J, Tong W. Toxicogenomics – A Drug Development Perspective. GENOMIC BIOMARKERS FOR PHARMACEUTICAL DEVELOPMENT 2014:127-155. [DOI: 10.1016/b978-0-12-397336-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Expedient data mining for nontargeted high-resolution LC-MS profiles of biological samples. Bioanalysis 2013; 5:1195-210. [PMID: 23721443 DOI: 10.4155/bio.13.86] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The application of high-resolution LC-MS metabolomics for drug candidate toxicity screening reflects phenotypic changes of an organism caused by induced chemical interferences. Its success depends not only on the ability to translate the acquired analytical information into biological knowledge, but also on the timely delivery of the results to aid the decision making process in drug discovery and development. Recent improvements in analytical instrumentation have resulted in the ability to acquire extremely information-rich datasets. These new data collection abilities have shifted the bottleneck in the timeline of metabolomic studies to the data analysis step. RESULTS This paper describes our approach to expedient data analysis of nontargeted high-resolution LC-MS profiles of biological samples. The workflow is illustrated with the example of metabolomics study of time-dependent fasting in male rats. The results from measurement of 220 endogenous metabolites in urine samples illustrate significant biochemical changes induced by fasting. CONCLUSION The developed software enables the reporting of relative quantities of annotated components while maintaining practical turnaround times. Each component annotation in the report is validated using both calculated isotopic peaks patterns and experimentally determined retention time data on standards.
Collapse
|