1
|
Qiu Y, Xu J, Liao W, Yang S, Wen Y, Farag MA, Zheng L, Zhao C. Ulvan derived from Ulva lactuca suppresses hepatocellular carcinoma cell proliferation through miR-542-3p-mediated downregulation of SLC35F6. Int J Biol Macromol 2025; 308:142252. [PMID: 40118430 DOI: 10.1016/j.ijbiomac.2025.142252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Hepatocellular carcinoma (HCC) therapy still presents significant challenges, with a critical need for novel molecular targets and effective natural compound-based therapies. Despite its known oncogenic potential in other cancers, the role of SLC35F6 in HCC has not been previously reported, leaving a gap in our understanding of its function and therapeutic relevance. Here, we demonstrate that SLC35F6 is overexpressed in HCC and is associated with poor prognosis. Ulva lactuca polysaccharide (ULP), a natural extract with known antitumor properties, exerts its effects by upregulating miR-542-3p, which in turn inhibits SLC35F6 expression and significantly increases TP53 protein levels. Furthermore, TP53 is positively regulated by miR-542-3p, and our results indicate that SLC35F6 is a target gene of miR-542-3p. Knockdown of SLC35F6 in H22 and HepG2 cells markedly reduced cell growth while elevating TP53 expression, supporting SLC35F6 as a key regulatory factor in the miR-542-3p/TP53 axis. While this study did not confirm direct mutual regulation between SLC35F6 and TP53, our findings provide evidence that targeting SLC35F6 can suppress HCC progression. Collectively, these results identify SLC35F6 as a potential therapeutic target for HCC and provide mechanistic insights into its regulation through the miR-542-3p/SLC35F6/TP53 axis.
Collapse
Affiliation(s)
- Yinghui Qiu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shuxin Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yuxi Wen
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Liu Y, Xiao X, Wang J, Wang Y, Yu Y. Silencing CircEIF3I/miR-526b-5p Axis Epigenetically Targets HGF/c-Met Signal to Hinder the Malignant Growth, Metastasis and Angiogenesis of Hepatocellular Carcinoma. Biochem Genet 2023; 61:48-68. [PMID: 35723810 DOI: 10.1007/s10528-022-10239-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/25/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition factor (c-Met) is important for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Circular RNAs (circRNAs) are key regulators of HCC progression, and this study focused on circRNA eukaryotic translation initiation factor 3 subunit I (circEIF3I) with HGF/c-Met in HCC. METHODS Levels of circEIF3I, microRNA (miR)-526b-5p, HGF, E-cadherin, N-cadherin, and Vimentin were detected by Gene Expression Omnibus database, quantitative PCR and western blotting. Cell functions were measured by detecting cell growth (cell proliferation assay with WST-1 and EdU, colony formation assay, flow cytometry, caspase 3 activity assay, and nude mouse tumorigenicity assay), metastasis (transwell assay and western blotting), angiogenesis (endothelial tube formation assay). Molecular interaction was determined dual-luciferase reporter assay, RNA immunoprecipitation, and Pearson correlation analysis. RESULTS Expression of circEIF3I was upregulated in HCC tissues. Knockdown of circEIF3I suppressed cell proliferation epithelial-mesenchymal transition, migration, invasion and tube formation ability but promoted apoptosis of HCC cells. CircEIF3I could sponge miR-526b-5pto regulate downstream HGF. Functionally, circEIF3I regulation in HCC cell progression was associated with miR-526b-5p sponging function and HGF upregulation could attenuate tumor-inhibiting roles of miR-526b-5p. HCC tumor growth was delayed by interfering circEIF3I. CONCLUSION CircEIF3I was an oncogenic circRNA in HCC-, and interfering circEIF3I exhibited anti-HCC activity via circEIF3I-miR-526b-5p-HGF/c-Met pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiological, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China
| | - Jingying Wang
- Department of Laboratory, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yitong Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China
| | - Yanhui Yu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China.
| |
Collapse
|
4
|
Tokarski M, Cierzniak A, Baczynska D. Role of hypoxia on microRNA-dependant regulation of HGFA - HGF - c-Met signalling pathway in human progenitor and mature endothelial cells. Int J Biochem Cell Biol 2022; 152:106310. [PMID: 36182093 DOI: 10.1016/j.biocel.2022.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 10/31/2022]
Abstract
Hepatocyte growth factor (HGF) is considered to be one of the key pro-angiogenic cytokines that stimulates endothelial cells to proliferate and migrate. The activation of the precursor form of HGF is primarily undertaken by the serine protease HGFA. Research indicates that HIF-1α hypoxia stimulates the expression of HGFA, which is synthesized by a range of cells including fibroblasts, endothelium, and macrophages. To date, little is known about the potential role of epigenetic factors in the regulation of the HGFA - HGF - c-Met signalling pathway. The literature suggests that there are several microRNAs (miRNAs, miRs) directly affecting the expression of c-Met under normoxic conditions. The main objective of the research described was to explore the effect of chemically-induced hypoxia on the expression of miRNA molecules in human progenitor and mature endothelial cells, with particulate attention paid to those miRNAs that may specifically affect the HGFA - HGF - c-Met signalling pathway. This publication sheds new light on the role of miRNAs in hypoxia, as well as identifying several miRNAs directly involved in the regulation of HGFA, HGF and c-Met expression in hypoxic conditions. The results indicate that hsa-miR-335-5p, hsa-miR-425-5p and hsa-miR-101-3p are the major miRNAs that appear to play an important role in the regulation of the HGFA - HGF - c-Met signalling pathway.
Collapse
Affiliation(s)
- Miron Tokarski
- Department of Molecular Techniques, Faculty of Medicine, Wroclaw Medical University, M. Curie-Skłodowskiej 52, Wrocław 50-369, Poland.
| | - Aneta Cierzniak
- Department of Molecular Techniques, Faculty of Medicine, Wroclaw Medical University, M. Curie-Skłodowskiej 52, Wrocław 50-369, Poland
| | - Dagmara Baczynska
- Department of Molecular and Cell Biology, Faculty of Pharmacy and Laboratory Medicine, Wroclaw Medical University, Borowska 211, Wrocław 50-556, Poland
| |
Collapse
|
5
|
Huang X, Li E, Shen H, Wang X, Tang T, Zhang X, Xu J, Tang Z, Guo C, Bai X, Liang T. Targeting the HGF/MET Axis in Cancer Therapy: Challenges in Resistance and Opportunities for Improvement. Front Cell Dev Biol 2020; 8:152. [PMID: 32435640 PMCID: PMC7218174 DOI: 10.3389/fcell.2020.00152] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Among hundreds of thousands of signal receptors contributing to oncogenic activation, tumorigenesis, and metastasis, the hepatocyte growth factor (HGF) receptor - also called tyrosine kinase MET - is a promising target in cancer therapy as its axis is involved in several different cancer types. It is also associated with poor outcomes and is involved in the development of therapeutic resistance. Several HGF/MET-neutralizing antibodies and MET kinase-specific small molecule inhibitors have been developed, resulting in some context-dependent progress in multiple cancer treatments. Nevertheless, the concomitant therapeutic resistance largely inhibits the translation of such targeted drug candidates into clinical application. Until now, numerous studies have been performed to understand the molecular, cellular, and upstream mechanisms that regulate HGF/MET-targeted drug resistance, further explore novel strategies to reduce the occurrence of resistance, and improve therapeutic efficacy after resistance. Intriguingly, emerging evidence has revealed that, in addition to its conventional function as an oncogene, the HGF/MET axis stands at the crossroads of tumor autophagy, immunity, and microenvironment. Based on current progress, this review summarizes the current challenges and simultaneously proposes future opportunities for HGF/MET targeting for therapeutic cancer interventions.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Enliang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Hang Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Zengwei Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Chengxiang Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Li YJ, Du L, Aldana-Masangkay G, Wang X, Urak R, Forman SJ, Rosen ST, Chen Y. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res 2019; 46:7108-7123. [PMID: 29893976 PMCID: PMC6101486 DOI: 10.1093/nar/gky484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/22/2018] [Indexed: 01/26/2023] Open
Abstract
The miR-34 family of microRNAs suppresses the expression of proteins involved in pluripotency and oncogenesis. miR-34 expression is frequently reduced in cancers; however, the regulation of their expression is not well understood. We used genome-wide miRNA profiling and mechanistic analysis to show that SUMOylation regulates miR-34b/c expression, which impacts the expression of c-Myc and other tested miR-34 targets. We used site-directed mutagenesis and other methods to show that protein kinase B (also known as Akt) phosphorylation of FOXO3a plays an important role in SUMOylation-dependent expression of miR-34b/c. This study reveals how the miR-34-targeted gene expression program is regulated by SUMOylation and shows that SUMOylation need not regulate target proteins through direct modification, but instead can act through the expression of their targeting miRNAs.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Li Du
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Grace Aldana-Masangkay
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019; 234:12369-12384. [PMID: 30605237 DOI: 10.1002/jcp.28058] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.
Collapse
Affiliation(s)
- Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zeinab Rostami
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Reid D, Mattos C. Targeting Cancer from a Structural Biology Perspective. UNRAVELLING CANCER SIGNALING PATHWAYS: A MULTIDISCIPLINARY APPROACH 2019:295-320. [DOI: 10.1007/978-981-32-9816-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int J Mol Sci 2018; 19:ijms19113295. [PMID: 30360560 PMCID: PMC6274736 DOI: 10.3390/ijms19113295] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
The HGF/c-MET pathway is active in the development of digestive system cancers, indicating that inhibition of HGF/c-MET signaling may have therapeutic potential. Various HGF/c-MET signaling inhibitors, mainly c-MET inhibitors, have been tested in clinical trials. The observed efficacy and adverse events of some c-MET inhibitors were not very suitable for treating digestive system cancers. The development of new HGF/c-MET inhibitors in preclinical studies may bring promising treatments and synergistic combination (traditional anticancer drugs and c-MET inhibitors) strategies provided anacceptable safety and tolerability. Insights into miRNA biology and miRNA therapeutics have made miRNAs attractive tools to inhibit HGF/c-MET signaling. Recent reports show that several microRNAs participate in inhibiting HGF/c-MET signaling networks through antagonizing c-MET or HGF in digestive system cancers, and the miRNAs-HGF/c-MET axis plays crucial and novel roles for cancer treatment. In the current review, we will discuss recent findings about inhibitors of HGF/c-MET signaling in treating digestive system cancers, and how miRNAs regulate digestive system cancers via mediating HGF/c-MET pathway.
Collapse
|
11
|
Qu J, Chen X, Sun YZ, Li JQ, Ming Z. Inferring potential small molecule-miRNA association based on triple layer heterogeneous network. J Cheminform 2018; 10:30. [PMID: 29943160 PMCID: PMC6020102 DOI: 10.1186/s13321-018-0284-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recently, many biological experiments have indicated that microRNAs (miRNAs) are a newly discovered small molecule (SM) drug targets that play an important role in the development and progression of human complex diseases. More and more computational models have been developed to identify potential associations between SMs and target miRNAs, which would be a great help for disease therapy and clinical applications for known drugs in the field of medical research. In this study, we proposed a computational model of triple layer heterogeneous network based small molecule–MiRNA association prediction (TLHNSMMA) to uncover potential SM–miRNA associations by integrating integrated SM similarity, integrated miRNA similarity, integrated disease similarity, experimentally verified SM–miRNA associations and miRNA–disease associations into a heterogeneous graph. To evaluate the performance of TLHNSMMA, we implemented global and two types of local leave-one-out cross validation as well as fivefold cross validation to compare TLHNSMMA with one previous classical computational model (SMiR-NBI). As a result, for Dataset 1, TLHNSMMA obtained the AUCs of 0.9859, 0.9845, 0.7645 and 0.9851 ± 0.0012, respectively; for Dataset 2, the AUCs are in turn 0.8149, 0.8244, 0.6057 and 0.8168 ± 0.0022. As the result of case studies shown, among the top 10, 20 and 50 potential SM-related miRNAs, there were 2, 7 and 14 SM–miRNA associations confirmed by experiments, respectively. Therefore, TLHNSMMA could be effectively applied to the prediction of SM–miRNA associations.
Collapse
Affiliation(s)
- Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Ya-Zhou Sun
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, China.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian-Qiang Li
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, China.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhong Ming
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, China.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
12
|
Bleau AM, Redrado M, Nistal-Villan E, Villalba M, Exposito F, Redin E, de Aberasturi AL, Larzabal L, Freire J, Gomez-Roman J, Calvo A. miR-146a targets c-met and abolishes colorectal cancer liver metastasis. Cancer Lett 2018; 414:257-267. [DOI: 10.1016/j.canlet.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
|
13
|
Wang T, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of FOXC2 in cancer. Clin Chim Acta 2018; 479:84-93. [PMID: 29341903 DOI: 10.1016/j.cca.2018.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Forkhead box protein C2 (FOXC2), a transcription factor of the forkhead/winged-helix family, is required for embryonic and prenatal development. FOXC2 acts as a crucial modulator during both angiogenesis and lymphangiogenesis via multiple angiogenic and lymphangiogenic pathways, respectively. Although recent studies have shed light on the emerging role of FOXC2 in cancer, very little is known about the precise underlying mechanisms. The purpose of this review is to summarize the current understanding of FOXC2 and provide potential mechanistic explanations of the relationship between FOXC2 and cancer, as well as discuss the prospect for future research in the promising prognostic value of FOXC2 in cancer.
Collapse
Affiliation(s)
- Teng Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
14
|
Wang Y, Wang Q, Song J. Inhibition of autophagy potentiates the proliferation inhibition activity of microRNA-7 in human hepatocellular carcinoma cells. Oncol Lett 2017; 14:3566-3572. [PMID: 28927113 PMCID: PMC5588049 DOI: 10.3892/ol.2017.6573] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are important molecules that are able to regulate multiple cellular processes in cancer cells. miR-7 has been previously identified as a tumor suppressive miRNA in several types of cancer. The aim of the present study was to investigate whether miR-7 is able to regulate autophagy in hepatocellular carcinoma (HCC) cells. It was identified that miR-7 was significantly downregulated in tumor tissues compared with adjacent normal tissues. Overexpression of miR-7 inhibited cell proliferative activity, which was partially reversed by miR-7 inhibitor. In addition, overexpression of miR-7 significantly induced an increasen in autophagic activity, and luciferase activity assay and western blot analysis identified that mammalian target of rapamycin (mTOR) was a direct target of miR-7. In addition, inhibition of autophagy by 3-methyladenine resulted in a marked enhancement of the proliferation inhibition effect of miR-7. In conclusion, miR-7 was identified to induce proliferation inhibition and autophagy in HCC cells by targeting mTOR, and inhibition of autophagy may be utilized to enhance the antitumor activity of miR-7.
Collapse
Affiliation(s)
- Yanna Wang
- Department of Infectious Diseases, Yantai Hospital For Infectious Diseases, Yantai, Shandong 264001, P.R. China
| | - Qiaoling Wang
- Department of Infectious Diseases, Yantai Hospital For Infectious Diseases, Yantai, Shandong 264001, P.R. China
| | - Jiqing Song
- Nursing Department of Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
15
|
miR-181d and c-myc-mediated inhibition of CRY2 and FBXL3 reprograms metabolism in colorectal cancer. Cell Death Dis 2017; 8:e2958. [PMID: 28749470 PMCID: PMC5550850 DOI: 10.1038/cddis.2017.300] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/23/2017] [Accepted: 05/18/2017] [Indexed: 01/23/2023]
Abstract
Colorectal cancer (CRC) is the second major cause of tumor-related deaths. MicroRNAs (miRNAs) have pivotal roles in CRC progression. Here, we describe the effect of miR-181d on CRC cell metabolism and underlying molecular mechanism. Our data firmly demonstrated that knockdown of miR-181d suppressed CRC cell proliferation, migration, and invasion by impairing glycolysis. Mechanistically, miR-181d stabilized c-myc through directly targeting the 3'-UTRs of CRY2 and FBXL3, which subsequently increased the glucose consumption and the lactate production. Inhibition of c-myc via siRNA or small molecular inhibitor abolished the oncogenic effects of miR-181d on the growth and metastasis of CRC cells. Furthermore, c-myc/HDAC3 transcriptional suppressor complex was found to co-localize on the CRY2 and FBXL3 promoters, epigenetically inhibit their transcription, and finally induce their downregulation in CRC cells. In addition, miR-181d expression could be directly induced by an activation of c-myc signaling. Together, our data indicate an oncogenic role of miR-181d in CRC by promoting glycolysis, and miR-181d/CRY2/FBXL3/c-myc feedback loop might be a therapeutic target for patients with CRC.
Collapse
|
16
|
Hu CT, Wu JR, Cheng CC, Wu WS. The Therapeutic Targeting of HGF/c-Met Signaling in Hepatocellular Carcinoma: Alternative Approaches. Cancers (Basel) 2017; 9:cancers9060058. [PMID: 28587113 PMCID: PMC5483877 DOI: 10.3390/cancers9060058] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC), one of the most devastating cancers worldwide, is due to frequent recurrence and metastasis. Among the metastatic factors in the tumor microenvironment, hepatocyte growth factor (HGF) has been well known to play critical roles in tumor progression, including HCC. Therefore, c-Met is now regarded as the most promising therapeutic target for the treatment of HCC. However, there are still concerns about resistance and the side effects of using conventional inhibitors of c-Met, such as tyrosine kinase inhibitors. Recently, many alternative strategies of c-Met targeting have been emerging. These include targeting the downstream effectors of c-Met, such as hydrogen peroxide-inducible clone 5 (Hic-5), to block the reactive oxygen species (ROS)-mediated signaling for HCC progression. Also, inhibition of endosomal regulators, such as PKCε and GGA3, may perturb the c-Met endosomal signaling for HCC cell migration. On the other hand, many herbal antagonists of c-Met-dependent signaling, such as saponin, resveratrol, and LZ-8, were identified. Taken together, it can be anticipated that more effective and safer c-Met targeting strategies for preventing HCC progression can be established in the future.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan.
| | - Jia-Ru Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
17
|
Panda AC, Abdelmohsen K, Gorospe M. SASP regulation by noncoding RNA. Mech Ageing Dev 2017; 168:37-43. [PMID: 28502821 DOI: 10.1016/j.mad.2017.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
Abstract
Noncoding RNAs (ncRNAs), including micro (mi)RNAs, long noncoding (lnc)RNAs, and circular (circ)RNAs, control specific gene expression programs by regulating transcriptional, post-transcriptional, and post-translational processes. Through their broad influence on protein expression and function, ncRNAs have been implicated in virtually all cellular processes such as proliferation, senescence, quiescence, differentiation, apoptosis, and the stress and immune responses. Senescence is a cellular phenotype associated with the physiologic decline of aging and with age-related pathologies. Besides their characteristic terminal growth arrest and differential gene expression programs, senescent cells are known to secrete potent pro-inflammatory, angiogenic, and tissue-remodeling factors. This important trait, known as the senescence-associated secretory phenotype (SASP), influences many biological processes such as tissue repair and regeneration, tumorigenesis, and the aging-associated pro-inflammatory state. Here, we review the microRNAs, lncRNAs, and circRNAs that influence the production of SASP factors and discuss the rising interest in SASP-regulatory ncRNAs as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
18
|
Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel) 2017; 8:genes8010021. [PMID: 28075356 PMCID: PMC5295016 DOI: 10.3390/genes8010021] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer.
Collapse
|
19
|
Zhang J, Babic A. Regulation of the MET oncogene: molecular mechanisms. Carcinogenesis 2016; 37:345-55. [PMID: 26905592 DOI: 10.1093/carcin/bgw015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
The MET oncogene is a predictive biomarker and an attractive therapeutic target for various cancers. Its expression is regulated at multiple layers via various mechanisms. It is subject to epigenetic modifications, i.e. DNA methylation and histone acetylation. Hypomethylation and acetylation of the MET gene have been associated with its high expression in some cancers. Multiple transcription factors including Sp1 and Ets-1 govern its transcription. After its transcription, METmRNA is spliced into multiple species in the nucleus before being transported to the cytoplasm where its translation is modulated by at least 30 microRNAs and translation initiation factors, e.g. eIF4E and eIF4B. METmRNA produces a single chain pro-Met protein of 170 kDa which is cleaved into α and β chains. These two chains are bound together through disulfide bonds to form a heterodimer which undergoes either N-linked or O-linked glycosylation in the Golgi apparatus before it is properly localized in the membrane. Upon interactions with its ligand, i.e. hepatocyte growth factor (HGF), the activity of Met kinase is boosted through various phosphorylation mechanisms and the Met signal is relayed to downstream pathways. The phosphorylated Met is then internalized for subsequent degradation or recycle via proteasome, lysosome or endosome pathways. Moreover, the Met expression is subject to autoregulation and activation by other EGFRs and G-protein coupled receptors. Since deregulation of the MET gene leads to cancer and other pathological conditions, a better understanding of the MET regulation is critical for Met-targeted therapeutics.
Collapse
Affiliation(s)
- Jack Zhang
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| | - Andy Babic
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| |
Collapse
|
20
|
Xia T, Li J, Cheng H, Zhang C, Zhang Y. Small-Molecule Regulators of MicroRNAs in Biomedicine. Drug Dev Res 2015; 76:375-81. [PMID: 26450362 DOI: 10.1002/ddr.21271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research MicroRNAs (miRNAs) can regulate gene expression at the post-transcriptional level and have been implicated in the development of various human diseases, including cancer. The regulatory networks of miRNAs play a vital role not only in normal physiology but also in pathology and may represent novel targets for drug discovery. Regulation of miRNAs and the elucidation of miRNA networks will advance miRNA-targeted research but are challenging due to a shortage of appropriate tools. Using different assay systems, diverse small molecules with unique miRNA regulatory activity have been identified. These bioactive small molecules not only showed regulation on different miRNAs but revealed previously unknown miRNA networks. Treatment of cancer both in vitro and in vivo with small-molecule regulators of miRNAs has demonstrated their therapeutic potential. In this review, we discuss assay systems for the identification of small-molecule regulators of miRNAs and reported small molecules, and discuss their applications as probes and candidate drug leads.
Collapse
Affiliation(s)
- Tingting Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210093, China.,Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Jinbo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210093, China.,Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, 22 Hankou Road, Nanjing, Jiangsu, 210093, China.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hao Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210093, China.,Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Yan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210093, China.,Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, 22 Hankou Road, Nanjing, Jiangsu, 210093, China.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|