1
|
Hu JW, Zhong Y, Song RJ. Copper/iron controlled regioselective 1,2-carboazidation of 1,3-dienes with acetonitrile and azidotrimethylsilane. Org Biomol Chem 2025; 23:1437-1442. [PMID: 39748734 DOI: 10.1039/d4ob01661k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carboazidation and diazidation were carried out on 1,3-diene compounds using TMSN3 as the azide source and MeCN as the cyanoalkylation reagent. This method exhibits excellent functional group tolerance, a broad substrate range, and a short reaction time, providing an effective pathway for synthesizing valuable azides. Our report introduces an unprecedented strategy for the carboazidation and diazidation of 1,3-dienes, with mechanism studies indicating that the reaction involves a radical pathway.
Collapse
Affiliation(s)
- Jun-Wei Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yao Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Liu S, He F, Jin C, Li Q, Zhao G, Ding K. Design and Synthesis of Dual Galectin-3 and EGFR Inhibitors Against Liver Fibrosis. Chem Asian J 2025; 20:e202401078. [PMID: 39504308 DOI: 10.1002/asia.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Liver fibrosis, mainly arising from chronic viral or metabolic liver diseases, is a significant global health concern. There is currently only one FDA-approved drug (Resmetirom) in the market to combat liver fibrosis. Both galectin-3 and epidermal growth factor receptor (EGFR) play important roles in liver fibrosis, while galectin-3 may interact with EGFR. Galectin-3 inhibitors, typically lactose or galactose derivatives may inhibit liver fibrosis. We hypothesized that targeting both galectin-3 and EGFR may have better effect against liver fibrosis. Here, EGFR inhibitor erlotinib was used in a series of designed galectin-3 inhibitors after hybridization with the pharmacophore structure in reported galectin-3 inhibitors to impede hepatic stellate cells (HSCs) activation by a typical method of click chemistry. Bioactivity test results showed that compound 29 suppressed TGF-β-induced upregulation of fibrotic markers (α-SMA, fibronectin-1, and collagen I). The preferred compound 29 displayed better binding to galectin-3 (KD=52.29 μM) and EGFR protein (KD=3.31 μM) by SPR assay. Further docking studies were performed to clarify the possible binding mode of compound 29 with galectin-3 and EGFR. Taken together, these results suggested that compound 29 could be a potential dual galectin-3 and EGFR inhibitor as leading compound for anti-liver fibrosis new drug development.
Collapse
Affiliation(s)
- Shuanglin Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
| | - Fei He
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Can Jin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Qing Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Guilong Zhao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Kan Ding
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
3
|
Fan ZW, Li ZQ, Zhao BY, Wang MY, Zhang HX, Wang YQ. Acid Promoted Tetrafunctionalization of Terminal Alkynes: Geminal Diazidation and Dibromination. Org Lett 2024; 26:3878-3882. [PMID: 38678578 DOI: 10.1021/acs.orglett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The synthesis of complex alkanes by the tetrafunctionalization of alkynes is limited and challenging. Herein, an unprecedented efficient geminal diazidation and dibromination of terminal alkynes is developed, which provides novel access to structurally diverse organic azides. The approach has exclusive chemo- and regioselectivity and features mild reaction conditions, good tolerance of various functional groups, and more crucially, no metal involved in the reaction, thereby benefiting the late-stage decoration of medicinal molecules. A mechanistic study showed that the current geminal diazidation and dibromination proceeds via a radical pathway.
Collapse
Affiliation(s)
- Zhi-Wu Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Hong-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
4
|
Gurawa A, Kumar M, Kashyap S. Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ 3-azidoiodane Species. ACS OMEGA 2021; 6:26623-26639. [PMID: 34661016 PMCID: PMC8515593 DOI: 10.1021/acsomega.1c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The photolytic radical-induced vicinal azidooxygenation of synthetically important and diverse functionalized substrates including unactivated alkenes is reported. The photoredox-catalyst/additive-free protocol enables intermolecular oxyazidation by simultaneously incorporating two new functionalities; C-O and C-N across the C=C double bond in a selective manner. Mechanistic investigations reveal the intermediacy of the azidyl radical facilitated via the photolysis of λ3-azidoiodane species and cascade proceeding to generate an active carbon-centered radical. The late-stage transformations of azido- and oxy-moieties were amply highlighted by assembling high-value drug analogs and bioactive skeletons.
Collapse
|
5
|
Tu Y, Dong H, Wang H, Ao Y, Liu Y. Divergent functionalization of α,β-enones: catalyst-free access to β-azido ketones and β-amino α-diazo ketones. Chem Commun (Camb) 2021; 57:4524-4527. [PMID: 33956012 DOI: 10.1039/d1cc00985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method for the azidation of β-fluoroalkyl α,β-unsaturated ketones to access a wide variety of fluorinated nitrogenous carbonyl compounds is developed. Different from existing precedents, neither a metallic nor an organic catalyst was involved in our strategy. Judicious choice of solvents allows for the modulation of the reaction outcomes, delivering β-azido ketones or β-amino α-diazo ketones. The reaction system features environmental friendliness, mild conditions, simplicity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Honglin Dong
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Huamin Wang
- College of Chemistry and Chemical Engineering, University of South China, 28 N Changsheng West Road, Hengyang 421001, P. R. China.
| | - Yuhui Ao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| |
Collapse
|
6
|
Cheng C, Sui B, Wang M, Hu X, Shi S, Xu P. Carrier-Free Nanoassembly of Curcumin-Erlotinib Conjugate for Cancer Targeted Therapy. Adv Healthc Mater 2020; 9:e2001128. [PMID: 32893507 PMCID: PMC7593849 DOI: 10.1002/adhm.202001128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Indexed: 12/30/2022]
Abstract
Anticancer drug-loaded nanoparticles have been explored extensively to decrease side effects while improving their therapeutic efficacy. However, due to the low drug loading content, premature drug release, nonstandardized carrier structure, and difficulty in predicting the fate of the carrier, only a few nanomedicines have been approved for clincial use. Herein, a carrier-free nanoparticle based on the self-assembly of the curcumin-erlotinib conjugate (EPC) is developed. The EPC nanoassembly exhibits more potent cell killing, better antimigration, and anti-invasion effects for BxPC-3 pancreatic cancer cells than the combination of free curcumin and erlotinib. Furthermore, benefiting from both passive and active tumor targeting effect, EPC nanoassembly can effectively accumulate in the tumor tissue in a xenograft pancreatic tumor mouse model. Consequently, EPC effectively reduces the growth of pancreatic tumors and extends the median survival time of the tumor-bearing mice from 22 to 68 days. In addition, no systemic toxicity is detected in the mice receiving EPC treatment. Attributed to the uniformity of the curcumin-erlotinib conjugate and easiness of scaling up, it is expected that the EPC can be translated into a powerful tool in fighting against pancreatic cancer and other epidermal growth factor receptor positive cancers.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Binglin Sui
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| |
Collapse
|
7
|
Rao DS, Reddy TR, Gurawa A, Kumar M, Kashyap S. Photoswitchable Regiodivergent Azidation of Olefins with Sulfonium Iodate(I) Reagent. Org Lett 2019; 21:9990-9994. [DOI: 10.1021/acs.orglett.9b03910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dodla S. Rao
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur 302017, India
| | - Thurpu R. Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur 302017, India
| | - Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur 302017, India
| |
Collapse
|
8
|
Reddy TR, Rao DS, Kashyap S. Visible-light activated metal catalyst-free vicinal diazidation of olefins with sulfonium iodate(i) species. Chem Commun (Camb) 2019; 55:2833-2836. [DOI: 10.1039/c9cc00007k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented visible-light inspired selective radical azidation of unactivated and diverse substituted vinylarenes with sulfonium iodate reagent has been realized. The intrinsic radical process triggered by light tolerated several synthetically useful functionalities enabling two new carbon-hetero bonds which display distinctive late-stage applications to biologically relevant scaffolds.
Collapse
Affiliation(s)
| | | | - Sudhir Kashyap
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| |
Collapse
|
9
|
Zhou H, Jian W, Qian B, Ye C, Li D, Zhou J, Bao H. Copper-Catalyzed Ligand-Free Diazidation of Olefins with TMSN 3 in CH 3CN or in H 2O. Org Lett 2017; 19:6120-6123. [PMID: 29090941 DOI: 10.1021/acs.orglett.7b02982] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An environmentally benign, copper-catalyzed diazidation of a broad range of olefins, including vinylarenes, unactivated alkenes, allene, and dienes, under mild conditions with TMSN3 (trimethylazidosilane) as azido source, has been developed. This reaction can be carried out in organic solvent or in aqueous solution where water is the sole solvent. The functional group compatibility of this reaction is good, which is proved by late-stage functionalizations of complex substrates.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences , 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wujun Jian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences , 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Bo Qian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences , 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences , 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Daliang Li
- Biomedical Research Center of South China & College of Life Science, Fujian Normal University , 1 Keji Road, Minhou, Fuzhou, Fujian Province 350117, P. R. China
| | - Jing Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences , 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences , 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
10
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
11
|
Boobalan R, Liu KK, Chao JI, Chen C. Synthesis and biological assay of erlotinib analogues and BSA-conjugated erlotinib analogue. Bioorg Med Chem Lett 2017; 27:1784-1788. [PMID: 28268137 DOI: 10.1016/j.bmcl.2017.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 11/28/2022]
Abstract
A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.
Collapse
Affiliation(s)
- Ramalingam Boobalan
- Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan; Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| | - Kuang-Kai Liu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Chinpiao Chen
- Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan; Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
| |
Collapse
|