1
|
Fernandes GFS, Kim SH, Castagnolo D. Harnessing biocatalysis as a green tool in antibiotic synthesis and discovery. RSC Adv 2024; 14:30396-30410. [PMID: 39318457 PMCID: PMC11420778 DOI: 10.1039/d4ra04824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Biocatalysis offers a sustainable approach to drug synthesis, leveraging the high selectivity and efficiency of enzymes. This review explores the application of biocatalysis in the early-stage synthesis of antimicrobial compounds, emphasizing its advantages over traditional chemical methods. We discuss various biocatalysts, including enzymes and whole-cell systems, and their role in the selective functionalization and preparation of antimicrobials and antibacterial building blocks. The review underscores the potential of biocatalysis to advance the development of new antibiotics and suggests directions and potential applications of enzymes in drug development.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Seong-Heun Kim
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London 150 Stamford Street London SE1 9NH UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
2
|
Lavekar AG, Thakare R, Saima, Equbal D, Chopra S, Sinha AK. Indole-based aryl sulfides target the cell wall of Staphylococcus aureus without detectable resistance. Drug Dev Res 2024; 85:e22123. [PMID: 37840429 DOI: 10.1002/ddr.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Sulfur-containing classes of the scaffold "Arylthioindoles" have been evaluated for antibacterial activity; they demonstrated excellent potency against methicillin-resistant Staphylococcus aureus (MRSA) as well as against vancomycin-resistant strains and a panel of clinical isolates of resistant strains. In this study, we have elucidated the mechanism of action of lead compounds, wherein they target the cell wall of S. aureus. Further, S. aureus failed to develop resistance against two lead compounds tested in a serial passage experiment in the presence of the compounds over a period of 40 days. Both the compounds demonstrated comparable in vivo efficacy with vancomycin in a neutropenic mice thigh infection model. The results of these antibacterial activities emphasize the excellent potential of thioethers for developing novel antibiotics and may fill in as a target for the adjustment of accessible molecules to develop new powerful antibacterial agents with fewer side effects.
Collapse
Affiliation(s)
- Aditya G Lavekar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ritesh Thakare
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saima
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- School of Advanced Chemical Sciences, Solan, Himachal Pradesh, India
| | - Danish Equbal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Kundu M, Misra AK. Preparation of glycosyl disulfides and sulfides via the formation of glycosyl Bunte salts as thiol surrogates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Saima, Lavekar AG, Kumar S, Rastogi SK, Sinha AK. Biocatalysis for C–S bond formation: Porcine pancreatic lipase (PPL) catalysed thiolysis/hydrothiolation reactions in sole water. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1615098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saima
- Medicinal and Process Chemistry Division, C.S.I.R. – Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Aditya G. Lavekar
- Medicinal and Process Chemistry Division, C.S.I.R. – Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Santosh Kumar
- Medicinal and Process Chemistry Division, C.S.I.R. – Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Sumit K. Rastogi
- Medicinal and Process Chemistry Division, C.S.I.R. – Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Arun K. Sinha
- Medicinal and Process Chemistry Division, C.S.I.R. – Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
5
|
Lu X, Fu F, Gao R, Liu H, Wang H, Xiao J. Environmentally friendly synthesis of unsymmetrical dialkyl disulfides by reacting organic halides with thiourea and sodium thiosulfate in an aqueous medium. NEW J CHEM 2019. [DOI: 10.1039/c9nj03024g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The developed synthetic procedure is economical and environmentally friendly. It also avoids using toxic organic solvents, and an oxidant or a reductant.
Collapse
Affiliation(s)
- Xiaogang Lu
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| | - Junhua Xiao
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| |
Collapse
|