1
|
Rivas F, Del Mármol C, Scalese G, Pérez Díaz L, Machado I, Blacque O, Salazar F, Coitiño EL, Benítez D, Medeiros A, Comini M, Gambino D. Multifunctional Organometallic Compounds Active against Infective Trypanosomes: Ru(II) Ferrocenyl Derivatives with Two Different Bioactive Ligands. Inorg Chem 2024; 63:11667-11687. [PMID: 38860314 DOI: 10.1021/acs.inorgchem.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Carolina Del Mármol
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Leticia Pérez Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, CH 8057 Zurich, Switzerland
| | - Fabiana Salazar
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas (CeInBio), Universidad de la República, 11400 Montevideo, Uruguay
| | - E Laura Coitiño
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas (CeInBio), Universidad de la República, 11400 Montevideo, Uruguay
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| |
Collapse
|
2
|
Calabretta MM, Michelini E. Current advances in the use of bioluminescence assays for drug discovery: an update of the last ten years. Expert Opin Drug Discov 2024; 19:85-95. [PMID: 37814480 DOI: 10.1080/17460441.2023.2266989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Bioluminescence is a well-established optical detection technique widely used in several bioanalytical applications, including high-throughput and high-content screenings. Thanks to advances in synthetic biology techniques and deep learning, a wide portfolio of luciferases is now available with tuned emission wavelengths, kinetics, and high stability. These luciferases can be implemented in the drug discovery and development pipeline, allowing high sensitivity and multiplexing capability. AREAS COVERED This review summarizes the latest advancements of bioluminescent systems as toolsets in drug discovery programs for in vitro applications. Particular attention is paid to the most advanced bioluminescence-based technologies for drug screening over the past 10 years (from 2013 to 2023) such as cell-free assays, cell-based assays based on genetically modified cells, bioluminescence resonance energy transfer, and protein complementation assays in 2D and 3D cell models. EXPERT OPINION The availability of tuned bioluminescent proteins with improved emission and stability properties is vital for the development of bioluminescence assays for drug discovery, spanning from reporter gene technology to protein-protein techniques. Further studies, combining machine learning with synthetic biology, will be necessary to obtain new tools for sustainable and highly predictive bioluminescent drug discovery platforms.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Ballesteros-Casallas A, Quiroga C, Ortiz C, Benítez D, Denis PA, Figueroa D, Salas CO, Bertrand J, Tapia RA, Sánchez P, Miscione GP, Comini MA, Paulino M. Mode of action of p-quinone derivatives with trypanocidal activity studied by experimental and in silico models. Eur J Med Chem 2023; 246:114926. [PMID: 36508970 DOI: 10.1016/j.ejmech.2022.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Quinones are attractive pharmacological scaffolds for developing new agents for the treatment of different transmissible and non-transmissible human diseases due to their capacity to alter the cell redox homeostasis. The bioactivity and potential mode of action of 19 p-quinone derivatives fused to different aromatic rings (carbo or heterocycles) and harboring distinct substituents were investigated in infective Trypanosoma brucei brucei. All the compounds, except for a furanequinone (EC50=38 μM), proved to be similarly or even more potent (EC50 = 0.5-5.5 μM) than the clinical drug nifurtimox (EC50 = 5.3 μM). Three furanequinones and one thiazolequinone displayed a higher selectivity than nifurtimox. Two of these selective hits resulted potent inhibitors of T. cruzi proliferation (EC50=0.8-1.1 μM) but proved inactive against Leishmania infantum amastigotes. Most of the p-quinones induced a rapid and marked intracellular oxidation in T. b. brucei. DFT calculations on the oxidized quinone (Q), semiquinone (Q•-) and hydroquinone (QH2) suggest that all quinones have negative ΔG for the formation of Q•-. Qualitative and quantitative structure-activity relationship analyses in two or three dimensions of different electronic and biophysical descriptors of quinones and their corresponding bioactivities (killing potency and oxidative capacity) were performed. Charge distribution over the quinone ring carbons of Q and Q.- and the frontier orbitals energies of SUMO (Q.-) and LUMO (Q) correlate with their oxidative and trypanocidal activity. QSAR analysis also highlighted that both bromine substitution in the p-quinone ring and a bulky phenyl group attached to the furane and thiazole rings (which generates a negative charge due to the π electron system polarized by the nearby heteroatoms) are favorable for activity. By combining experimental and in silico procedures, this study disclosed important information about p-quinones that may help to rationally tune their electronic properties and biological activities.
Collapse
Affiliation(s)
- Andres Ballesteros-Casallas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia; Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - Cristina Quiroga
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Cecilia Ortiz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Pablo A Denis
- Computational Nanotechnology, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - David Figueroa
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Ricardo A Tapia
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Patricio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia.
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Margot Paulino
- Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay.
| |
Collapse
|
4
|
Rivas F, Del Mármol C, Scalese G, Pérez-Díaz L, Machado I, Blacque O, Medeiros A, Comini M, Gambino D. New multifunctional Ru(II) organometallic compounds show activity against Trypanosoma brucei and Leishmania infantum. J Inorg Biochem 2022; 237:112016. [PMID: 36244312 DOI: 10.1016/j.jinorgbio.2022.112016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Human African trypanosomiasis (sleeping sickness) and leishmaniasis are prevalent zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Leishmania spp). Additionally, both are co-endemic in certain regions of the world. Only a small number of old drugs exist for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these trypanosomatid parasites by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: 8-hydroxyquinoline derivatives (8HQs) and polypyridyl ligands (NN). Three [Ru(8HQs)(dppf)(NN)](PF6) compounds were synthesized and fully characterized. They showed in vitro activity on bloodstream Trypanosoma brucei (IC50 140-310 nM) and on Leishmania infantum promastigotes (IC50 3.0-4.8 μM). The compounds showed good selectivity towards T. brucei in respect to J774 murine macrophages as mammalian cell model (SI 15-38). Changing hexafluorophosphate counterion by chloride led to a three-fold increase in activity on both parasites and to a two to three-fold increase in selectivity towards the pathogens. The compounds affect in vitro at least the targets of the individual bioactive moieties included in the new chemical entities: DNA and generation of ROS. The compounds are stable in solution and are more lipophilic than the free bioactive ligands. No clear correlation between lipophilicity, interaction with DNA or generation of ROS and activity was detected, which agrees with their overall similar anti-trypanosoma potency and selectivity. These compounds are promising candidates for further drug development.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Programa de Posgrado en Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carolina Del Mármol
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Universidad de la República, Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Barreiro-Costa O, Quiroga Lozano C, Muñoz E, Rojas-Silva P, Medeiros A, Comini MA, Heredia-Moya J. Evaluation of the Anti- Leishmania mexicana and - Trypanosoma brucei Activity and Mode of Action of 4,4'-(Arylmethylene)bis(3-methyl-1-phenyl-1 H-pyrazol-5-ol). Biomedicines 2022; 10:biomedicines10081913. [PMID: 36009460 PMCID: PMC9405596 DOI: 10.3390/biomedicines10081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Trypanosomiasis and leishmaniasis are neglected infections caused by trypanosomatid parasites. The first-line treatments have many adverse effects, high costs, and are prone to resistance development, hence the necessity for new chemotherapeutic options. In line with this, twenty five 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) derivatives were synthesized and evaluated in vitro for their anti-trypanosomatid activity. Ten and five compounds from this series showed IC50 ≤ 10 µM against the promastigote and the bloodstream stage of Leishmania mexicana and Trypanosoma brucei brucei, respectively. Overall, derivatives with pyrazole rings substituted with electron-withdrawing groups proved more active than those with electron-donating groups. The hits proved moderately selective towards L. mexicana and T. brucei (selectivity index, SI, compared to murine macrophages = 5−26). The exception was one derivative displaying an SI (>111−189) against T. brucei that surpassed, by >6-fold, the selectivity of the clinical drug nifurtimox (SI = 13−28.5). Despite sharing a common scaffold, the hits differed in their mechanism of action, with halogenated derivatives inducing a rapid and marked intracellular oxidative milieu in infective T. brucei. Notably, most of the hits presented better absorption, distribution, metabolism, and excretion (ADME) properties than the reference drugs. Several of the bioactive molecules herein identified represent a promising starting point for further improvement of their trypanosomatid potency and selectivity.
Collapse
Affiliation(s)
- Olalla Barreiro-Costa
- Center for Biomedical Research (CENBIO), Eugenio Espejo College of Health Sciences, Universidad UTE, Quito 170527, Ecuador
| | - Cristina Quiroga Lozano
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Erika Muñoz
- Instituto de Microbiología y Programa de Maestría en Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Patricio Rojas-Silva
- Center for Biomedical Research (CENBIO), Eugenio Espejo College of Health Sciences, Universidad UTE, Quito 170527, Ecuador
- Instituto de Microbiología y Programa de Maestría en Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marcelo A. Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Correspondence: (M.A.C.); (J.H.-M.)
| | - Jorge Heredia-Moya
- Center for Biomedical Research (CENBIO), Eugenio Espejo College of Health Sciences, Universidad UTE, Quito 170527, Ecuador
- Correspondence: (M.A.C.); (J.H.-M.)
| |
Collapse
|
6
|
Mesa JM, Comini MA, Dibello E, Gamenara D. Organocatalytic synthesis and anti‐trypanosomal activity evaluation of L‐pentofuranose‐mimetic iminosugars. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juan Manuel Mesa
- Universidad de la Republica Uruguay Organic chemistry department Gral. Flores 2124 11800 Montevideo URUGUAY
| | - Marcelo Alberto Comini
- Institut Pasteur Montevideo Group Redox Biology of Trypanosomes Mataojo 2020 11400 Montevideo URUGUAY
| | - Estefania Dibello
- Universidad de la República Uruguay Departamento de Química Orgánica Gral. Flores 21 24 11800 Montevideo URUGUAY
| | - Daniela Gamenara
- Universidad de la Republica Facultad de Quimica Organic Chemistry Department Gral. Flores 2124 11800 Montevideo URUGUAY
| |
Collapse
|
7
|
Dantas RF, Torres-Santos EC, Silva FP. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz 2022; 117:e210402. [PMID: 35293482 PMCID: PMC8920514 DOI: 10.1590/0074-02760210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.
Collapse
Affiliation(s)
- Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Pazos M, Dibello E, Mesa JM, Sames D, Comini MA, Seoane G, Carrera I. Iboga Inspired N-Indolylethyl-Substituted Isoquinuclidines as a Bioactive Scaffold: Chemoenzymatic Synthesis and Characterization as GDNF Releasers and Antitrypanosoma Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030829. [PMID: 35164094 PMCID: PMC8839081 DOI: 10.3390/molecules27030829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 μM) and two of them (compounds 6 and 14) showed a good selectivity index.
Collapse
Affiliation(s)
- Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Estefania Dibello
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Juan Manuel Mesa
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA;
| | - Marcelo Alberto Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Correspondence: ; Tel.: +598-2-9247-881
| |
Collapse
|
9
|
Dibello E, Comini MA, Benítez D. A Simple, Robust, and Affordable Bioluminescent Assay for Drug Screening Against Infective African Trypanosomes. Methods Mol Biol 2022; 2524:149-162. [PMID: 35821469 DOI: 10.1007/978-1-0716-2453-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter introduces a simple and robust in vitro viability assay to screen bioactive small molecules (e.g., natural, synthetic) against the monomorphic and infective (bloodstream) form of Trypanosoma brucei brucei. The assay relies on a bioluminescent transgenic parasite harboring a genetically encoded copy of a thermostable redshifted firefly luciferase from Photinus pyralis.The major advantages of the assay are simplicity and cost efficiency, along with excellent quality parameters. The bioassay allows estimating parasite numbers and viability (and metabolic state) as a function of bioluminescence (BL) signal. Parasites are grown in the presence of the molecules of interest in a 96-well microplate, and 24 h later, BL is determined with a simple protocol lacking washing steps, using cost-efficient reagents with a reasonable readout time for high-throughput applications.
Collapse
Affiliation(s)
- Estefania Dibello
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
10
|
Rivas F, Medeiros A, Quiroga C, Benítez D, Comini M, Rodríguez-Arce E, Machado I, Cerecetto H, Gambino D. New Pd-Fe ferrocenyl antiparasitic compounds with bioactive 8-hydroxyquinoline ligands: a comparative study with their Pt-Fe analogues. Dalton Trans 2021; 50:1651-1665. [PMID: 33449983 DOI: 10.1039/d0dt03963b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the search for a more effective chemotherapy for the treatment of Human African Trypanosomiasis, a disease caused by the parasite Trypanosoma brucei, the development of ferrocenyl compounds has arisen as a promising strategy. In this work, five new Pd-Fe heterobimetallic [PdII(L)(dppf)](PF6) compounds, including 8-hydroxyquinolyl derivatives HL1-HL5 as bioactive ligands and dppf = 1,1'-bis(diphenylphosphino)ferrocene as the organometallic co-ligand, were synthesized and fully characterized in the solid state and in solution. Molecular structures of three compounds were solved by single crystal X-ray diffraction methods. The compounds displayed submicromolar or micromolar IC50 values against bloodstream T. brucei (IC50: 0.33-1.2 μM), and good selectivity towards the pathogen (SI: 4-102) with respect to mammalian macrophages (cell line J774). The new Pd complexes proved to be 2-fold to 45-fold more potent than the drug nifurtimox but most of them are less active than their Pt analogues. Potential molecular targets were studied. The complexes interact with DNA but they do not alter the intracellular thiol-redox homeostasis of the parasite. In order to understand and predict the main structural determinants on the anti-T. brucei activity, a search of quantitative structure-activity relationships (QSAR) was performed including all the [M(L)(dppf)](PF6) complexes, where M = Pd(ii) or Pt(ii), currently and previously developed by us. The correlation obtained shows the relevance of the electronic effects, the lipophilicity and the type of metal. According to the QSAR study, compounds with electron-withdrawing ligands, higher lipophilicity and harboring Pt would result in higher T. brucei cytotoxicity. From the whole series of [M(L)(dppf)](PF6) compounds developed, where M = Pt(ii) or Pd(ii) and HL = 8-hydroxyquinolyl derivatives, Pt-dppf-L4 (IC50 = 0.14 μM, SI = 48) was selected to perform an exploratory pre-clinical study in infected mice. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described and exerts an anti-proliferative effect on parasites, which extends animal survival but is not curative.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Programa de Posgrados, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ortíz C, Moraca F, Laverriere M, Jordan A, Hamilton N, Comini MA. Glucose 6-Phosphate Dehydrogenase from Trypanosomes: Selectivity for Steroids and Chemical Validation in Bloodstream Trypanosoma brucei. Molecules 2021; 26:E358. [PMID: 33445584 PMCID: PMC7826790 DOI: 10.3390/molecules26020358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/17/2022] Open
Abstract
Glucose 6-phosphate dehydrogenase (G6PDH) fulfills an essential role in cell physiology by catalyzing the production of NADPH+ and of a precursor for the de novo synthesis of ribose 5-phosphate. In trypanosomatids, G6PDH is essential for in vitro proliferation, antioxidant defense and, thereby, drug resistance mechanisms. So far, 16α-brominated epiandrosterone represents the most potent hit targeting trypanosomal G6PDH. Here, we extended the investigations on this important drug target and its inhibition by using a small subset of androstane derivatives. In Trypanosoma cruzi, immunofluorescence revealed a cytoplasmic distribution of G6PDH and the absence of signal in major organelles. Cytochemical assays confirmed parasitic G6PDH as the molecular target of epiandrosterone. Structure-activity analysis for a set of new (dehydro)epiandrosterone derivatives revealed that bromination at position 16α of the cyclopentane moiety yielded more potent T. cruzi G6PDH inhibitors than the corresponding β-substituted analogues. For the 16α brominated compounds, the inclusion of an acetoxy group at position 3 either proved detrimental or enhanced the activity of the epiandrosterone or the dehydroepiandrosterone derivatives, respectively. Most derivatives presented single digit μM EC50 against infective T. brucei and the killing mechanism involved an early thiol-redox unbalance. This data suggests that infective African trypanosomes lack efficient NADPH+-synthesizing pathways, beyond the Pentose Phosphate, to maintain thiol-redox homeostasis.
Collapse
Affiliation(s)
- Cecilia Ortíz
- Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Francesca Moraca
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Marc Laverriere
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomus (IIB-INTECH, UNSAM-CONICET), Av. General Paz 5445, INTI, San Martín 1650, Pcia de Buenos Aires, Argentina;
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK; (A.J.); (N.H.)
| | - Niall Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK; (A.J.); (N.H.)
| | - Marcelo A. Comini
- Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| |
Collapse
|