1
|
Priyanka, Sharma M, Vaid B, Bharti R, Raut S, Jolly RS, Khatri N. Comprehensive safety and toxicity analysis of 2,2'-Bipyridine derivatives in combating MRSA biofilm formation and persistence. Front Cell Infect Microbiol 2025; 15:1493679. [PMID: 39925377 PMCID: PMC11802822 DOI: 10.3389/fcimb.2025.1493679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) infections have become arduous to treat due to their capacity to form biofilms, develop persistence, and exhibit significant antimicrobial resistance. These factors contribute to the complexity of managing MRSA infections and highlight the urgent need for innovative treatment strategies. Objectives This endeavor aims to evaluate the safety of 2,2'-Bipyridine (2,2'-Bipy) derivatives and their antimicrobial, anti-biofilm, and anti-persister activities in treating MRSA Infections. Methods Six derivatives were screened for their ADMET properties and tested for minimum inhibitory concentrations against various bacterial strains using agar well diffusion and broth dilution. Safety studies were conducted through hemolysis tests, cell viability assays, and in vivo acute oral toxicity examinations. Bactericidal mechanisms and biofilm disruption effects were analyzed using crystal violet staining and confocal microscopy assays. The murine thigh infection model was also used to investigate the in vivo efficacy. Results All derivatives exhibited favorable physicochemical profiles and ADMET properties and are predicted to be safe based on their drug-like properties. in vitro studies demonstrated that derivatives are non-toxic to 3T3 L1, and in vivo studies confirmed their safety in mice at a dose of 300 mg/kg and their non-hemolytic nature against rabbit red blood cells. All compounds showed potent antibacterial activity against the tested bacteria, including the resistant MRSA strain 831. They inhibited biofilm formation and eradicated biofilms in a dose-dependent manner against MTCC 737 and MRSA 831, and they effectively eliminated MRSA persister cells, outperforming the reference antibiotic vancomycin. These derivatives were found to depolarize the mitochondrial membrane and accumulate intracellular reactive oxygen species. These derivatives significantly reduced the bacterial load in the murine thigh infection model. Conclusion The study concluded that 2,2'-Bipy derivatives possess significant antimicrobial activity, are non-toxic, and are effective in inhibiting biofilm formation and killing persister cells.
Collapse
Affiliation(s)
- Priyanka
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Mohini Sharma
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Bhavna Vaid
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- PG Department of Chemistry, Sri Guru Tegh Bahadur (SGTB) Khalsa College, Sri Anandpur Sahib, Punjab, India
| | - Ram Bharti
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sachin Raut
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - R. S. Jolly
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Neeraj Khatri
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
Cortat Y, Zobi F. Resurgence and Repurposing of Antifungal Azoles by Transition Metal Coordination for Drug Discovery. Pharmaceutics 2023; 15:2398. [PMID: 37896159 PMCID: PMC10609764 DOI: 10.3390/pharmaceutics15102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Coordination compounds featuring one or more antifungal azole (AA) ligands constitute an interesting family of candidate molecules, given their medicinal polyvalence and the viability of drug complexation as a strategy to improve and repurpose available medications. This review reports the work performed in the field of coordination derivatives of AAs synthesized for medical purposes by discussing the corresponding publications and emphasizing the most promising compounds discovered so far. The resulting overview highlights the efficiency of AAs and their metallic species, as well as the potential still lying in this research area.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
3
|
Sari S, Önder S, Akkaya D, Sabuncuoğlu S, Zengin M, Barut B, Karakurt A. Azole derivatives inhibit wildtype butyrylcholinesterase and its common mutants. Drug Dev Res 2023; 84:1018-1028. [PMID: 37154110 DOI: 10.1002/ddr.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Azoles, which have been used for antifungal chemotherapy for decades, have recently been of interest for their efficacy against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). There is little known about the potential of azoles against BChE, however there is none regarding their inhibitory effects against mutants of BChE. In the current study, an azole library of 1-aryl-2-(1H-imidazol-1-yl)ethanol/ethanone oxime esters were tested against AChE and BChE, which yielded derivates more potent than the positive control, galantamine, against both isoforms. Kinetic analyses were performed for wildtype and mutant (A328F and A328Y) inhibition for the two most potent BChE inhibitors, pivalic and 3-bezoylpropanoic acid esters of 2-(1H-imidazol-1-yl)-1-(2-naphthyl)ethanol, which were found to have great affinity to the wildtype and mutant BChE types with Ki values as low as 0.173 ± 0.012 µM. The compounds were identified to show linear competitive or mixed type inhibition. Molecular modeling confirmed these kinetic data and provided further insights regarding molecular basis of BChE inhibition by the active derivatives. Thus, current study suggests new azole derivatives with promising cholinesterase inhibitory effects and reveals the first set of information to promote our understanding for the inhibitory behavior of this class against the mutant BChE forms.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Seda Önder
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Akkaya
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| |
Collapse
|
4
|
Gambacorta N, Özdemir Z, Doğan İS, Ciriaco F, Zenni YN, Karakurt A, Saraç S, Nicolotti O. Integrated experimental and theoretical approaches to investigate the molecular mechanisms of the enantioseparation of chiral anticonvulsant and antifungal compounds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Lee YJ, Park S, Kim Y, Kim SH, Seo J. Facile synthetic method for peptoids bearing multiple azoles on side chains. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Soyeon Park
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Yujeong Kim
- Western Seoul Center Korea Basic Science Institute Seoul Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center Korea Basic Science Institute Seoul Republic of Korea
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Jiwon Seo
- Department of Chemistry Gwangju Institute of Science and Technology Gwangju Republic of Korea
| |
Collapse
|
6
|
Stevanović NL, Kljun J, Aleksic I, Bogojevic SS, Milivojevic D, Veselinovic A, Turel I, Djuran MI, Nikodinovic-Runic J, Glišić BĐ. Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex. Dalton Trans 2022; 51:5322-5334. [PMID: 35293926 DOI: 10.1039/d2dt00411a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 μg mL-1. Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 × MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.
Collapse
Affiliation(s)
- Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Aleksandar Veselinovic
- University of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr Zorana Đinđića 81, 18108 Niš, Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
7
|
Caballero Alfonso AY, Mora Lagares L, Novic M, Benfenati E, Kumar A. Exploration of structural requirements for azole chemicals towards human aromatase CYP19A1 activity: Classification modeling, structure-activity relationships and read-across study. Toxicol In Vitro 2022; 81:105332. [PMID: 35176449 DOI: 10.1016/j.tiv.2022.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023]
Abstract
Human aromatase, also called CYP19A1, plays a major role in the conversion of androgens into estrogens. Inhibition of aromatase is an important target for estrogen receptor (ER)-responsive breast cancer therapy. Use of azole compounds as aromatase inhibitors is widespread despite their low selectivity. A toxicological evaluation of commonly used azole-based drugs and agrochemicals with respect to CYP19A1is currently requested by the European Union- Registration, Evaluation, Authorization and Restriction of Chemicals (EU-REACH) regulations due to their potential as endocrine disruptors. In this connection, identification of structural alerts (SAs) is an effective strategy for the toxicological assessment and safe drug design. The present study describes the identification of SAs of azole-based chemicals as guiding experts to predict the aromatase activity. Total 21 SAs associated with aromatase activity were extracted from dataset of 326 azole-based drugs/chemicals obtained from Tox21 library. A cross-validated classification model having high accuracy (error rate 5%) was proposed which can precisely classify azole chemicals into active/inactive toward aromatase. In addition, mechanistic details and toxicological properties (agonism/antagonism) of azoles with respect to aromatase were explored by comparing active and inactive chemicals using structure-activity relationships (SAR). Lastly, few structural alerts were applied to form chemical categories for read-across applications.
Collapse
Affiliation(s)
- Ana Y Caballero Alfonso
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche "Mario Negri"-IRCCS, Milano, Italy; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Liadys Mora Lagares
- Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novic
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche "Mario Negri"-IRCCS, Milano, Italy
| | - Anil Kumar
- Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
8
|
El-Hazek RM, Elkenawy NM, Zaher NH, El-Gazzar MG. Green synthesis of novel antifungal 1,2,4-triazoles effective against γ-irradiated Candida parapsilosis. Arch Pharm (Weinheim) 2021; 355:e2100287. [PMID: 34708424 DOI: 10.1002/ardp.202100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
This study reports the green synthesis of 11 novel 3-substituted-4-amino-5-mercapto-1,2,4-triazole derivatives using water as a readily available nontoxic solvent. Evaluation of their antimicrobial potential against several clinical pathogenic microorganisms was carried out. The newly synthesized cysteine derivative 6 showed promising antifungal activity against both γ-irradiated and nonirradiated Candida parapsilosis 216, with the lowest MIC (minimum inhibitory concentration) value of 3.125 µg/ml, probably through inhibition of 14α-demethylase. In addition, compound 6 showed complete inhibition of gelatinase, a virulence enzyme of C. parapsilosis. Also, scanning electron microscopy was carried out. Interestingly, compound 6 acted as a dual agent as it also showed good antibacterial activity against strains of Gram-positive bacteria used in the study. The synthesized compounds showed no cytotoxicity.
Collapse
Affiliation(s)
- Reham M El-Hazek
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nora M Elkenawy
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nashwa H Zaher
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
9
|
Tafelska-Kaczmarek A, Kołodziejska R, Kwit M, Stasiak B, Wypij M, Golińska P. Synthesis, Absolute Configuration, Antibacterial, and Antifungal Activities of Novel Benzofuryl β-Amino Alcohols. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4080. [PMID: 32937873 PMCID: PMC7560283 DOI: 10.3390/ma13184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
A series of new benzofuryl α-azole ketones was synthesized and reduced by asymmetric transfer hydrogenation (ATH). Novel benzofuryl β-amino alcohols bearing an imidazolyl and triazolyl substituents were obtained with excellent enantioselectivity (96-99%). The absolute configuration (R) of the products was confirmed by means of electronic circular dichroism (ECD) spectroscopy supported by theoretical calculations. Selected benzofuryl α-azole ketones were also successfully asymmetrically bioreduced by fungi of Saccharomyces cerevisiae and Aureobasidium pullulans species. Racemic and chiral β-amino alcohols, as well as benzofuryl α-amino and α-bromo ketones were evaluated for their antibacterial and antifungal activities. From among the synthesized β-amino alcohols, the highest antimicrobial activity was found for (R)-1-(3,5-dimethylbenzofuran-2-yl)-2-(1H-imidazol-1-yl)ethan-1-ol against S. aureus ATCC 25923 (MIC = 64, MBC = 96 μg mL-1) and (R)-1-(3,5-dimethylbenzofuran-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-ol against yeasts of M. furfur DSM 6170 (MIC = MBC = 64 μg mL-1). In turn, from among the tested ketones, 1-(benzofuran-2-yl)-2-bromoethanones (1-4) were found to be the most active against M. furfur DSM 6170 (MIC = MBC = 1.5 μg mL-1) (MIC-minimal inhibitory concentration, MBC-minimal biocidal concentration).
Collapse
Affiliation(s)
- Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 24 Karłowicz Street, 85-092 Bydgoszcz, Poland;
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland; (M.K.); (B.S.)
| | - Bartosz Stasiak
- Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland; (M.K.); (B.S.)
| | - Magdalena Wypij
- Department of Microbiology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (P.G.)
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 1 Lwowska Street, 87-100 Toruń, Poland; (M.W.); (P.G.)
| |
Collapse
|