1
|
Bojuan L, Youdong Z, Lei W, Lixin X, Jinyang M. Oleanolic Acid Alleviates Neuronal Ferroptosis in Subarachnoid Hemorrhage by Inhibiting KEAP1-Nrf2 and NF-κB Pathways. Drug Dev Res 2025; 86:e70105. [PMID: 40358968 DOI: 10.1002/ddr.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid compound, and we previously report that it ameliorates neurological injury in subarachnoid hemorrhage (SAH) model. However, the underlying mechanism is not clear. The aim of this study was to explore the effect and mechanism of OA on SAH. In this study, network pharmacology was applied to screen the targets of OA in SAH treatment. Based on these targets, protein-protein interaction network was constructed, and k-means cluster analysis was used to screen the core targets of OA in SAH treatment. In vitro SAH model was constructed with hemin-induced neuron HT22 and microglia BV2. Then cell counting Kit 8, flow cytometry, western blot, qPCR were performed to evaluate the effects of OA on neurons and microglia. 93 targets were identified as the core targets of OA in SAH treatment. Notably, these targets are closely related to neuroinflammation and oxidative stress responses. OA had good binding activity with KEAP1, NFKB1 and IKBA. OA significantly alleviated the inhibitory effect of hemin on HT22 cell viability. OA significantly inhibited the expression of CD86, promoted the expression of CD206, and promoted the transformation of microglia from M1 type to M2 type. Additionally, OA could inhibit the activation of NF-κB and KEAP1/Nrf2 pathways. In conclusion, OA ameliorates inflammatory response, oxidative stress and ferroptosis in SAH, and suppresses neuronal injury by inhibiting NF-κB and KEAP1/Nrf2 pathways.
Collapse
Affiliation(s)
- Lang Bojuan
- Department of Pathology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
| | - Zhou Youdong
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wang Lei
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
| | - Xue Lixin
- Department of Neurosurgery, Zhijiang Branch of Yichang Central People's Hospital, Yichang, PR China
| | - Ma Jinyang
- Department of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, PR China
| |
Collapse
|
2
|
Yin T, Wang H, Zou Y. Application of network pharmacology, bioinformatics, computational molecular docking, and experimental validation to study the anticancer effects of oleanolic acid in oral squamous carcinoma cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2025; 75:41-68. [PMID: 40208786 DOI: 10.2478/acph-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 04/12/2025]
Abstract
Oleanolic acid (OA) has demonstrated anticancer effects across various cancers, with some derivatives advancing to clinical trials. Howe ver, its precise mechanisms of action remain unclear, especially in oral squamous cell carcinoma (OSCC). This study employed network pharmacology, bioinformatics, molecular docking, dynamics simulations, and experimental validation to explore OA's anticancer effects in OSCC and elucidate its mechanism of action. OA's pharmacokinetic and physicochemical properties were assessed using SwissADME and Molsoft, revealing high oral bioavailability and GI absorption. SwissTargetPrediction and SuperPred identified protein targets, whereas GeneCards provided OSCC-related targets. A Venn diagram showed 34 overlapping targets between OA and OSCC. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network with 32 nodes and 164 edges, identifying HSP90AA1, STAT3, HSP90AB1, PI3KR1, and NFKB1 as key hub genes. Gene ontology and KEGG enrichment analyses highlighted relevant biological processes, molecular functions, and pathways. Molecular docking and dynamics simulations confirmed the strong binding of OA to hub targets. Experimental validation showed that OA inhibited cell viability and colony formation in a dose-dependent manner, induced apoptosis, and downregulated HSP90AA1, STAT3, and PI3KR1 proteins. In conclusion, this comprehensive study combining network pharmacology, bioinformatics, molecular simulations, and experimental assays provides valuable insights into OA's anticancer potential and detailed mechanism of action in OSCC.
Collapse
Affiliation(s)
- Ting Yin
- 1Department of Medicine Linfen Vocational and Technical College, Linfen City, Shanxi 041000, China
| | - Hao Wang
- 2Department of Stomatology Affiliated Hospital of Guangdong Medical University Zhanjiang City, Guangdong Province, 524001, China
| | - Yaqin Zou
- 2Department of Stomatology Affiliated Hospital of Guangdong Medical University Zhanjiang City, Guangdong Province, 524001, China
| |
Collapse
|
3
|
Zhou Y, Wang H, Zhu X, Zhao Q, Deng G, Li Y, Chen Q. Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid. Drug Deliv 2024; 31:2388735. [PMID: 39169653 PMCID: PMC11342817 DOI: 10.1080/10717544.2024.2388735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.
Collapse
Affiliation(s)
- Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
| | - Hengyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
4
|
Han Y, Hao G, Han S, Zhu T, Dong Y, Chen L, Yang X, Li X, Jin H, Liang G. Polydatin ameliorates early brain injury after subarachnoid hemorrhage through up-regulating SIRT1 to suppress endoplasmic reticulum stress. Front Pharmacol 2024; 15:1450238. [PMID: 39295935 PMCID: PMC11408241 DOI: 10.3389/fphar.2024.1450238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aims to investigate the inhibitory effect of Polydatin (PD) on endoplasmic reticulum (ER) stress following subarachnoid hemorrhage (SAH) and to elucidate the underlying mechanisms. Methods A standard intravascular puncture model was established to mimic SAH in mice. Neurological functions were assessed using neurological scoring, Grip test, and Morris water maze. Brain edema and Evans blue extravasation were measured to evaluate blood-brain barrier permeability. Western blot and quantitative real-time polymerase chain reaction (PCR) analyses were performed to examine protein and mRNA expressions related to ER stress. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to detect cell apoptosis, and transmission electron microscopy was used to observe the ultrastructure of the endoplasmic reticulum. Results The results indicated that PD significantly reduced brain edema and Evans blue extravasation after SAH, improving neurological function. Compared to the SAH group, the expression levels of ER stress-related proteins including glucose-regulated protein 78 (GRP78), phosphorylated protein kinase R-like endoplasmic reticulum kinase (p-PERK), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), were significantly lower in the PD-treated group. Moreover, PD significantly enhances the protein expression of Sirtuin 1 (SIRT1). Validation with sh-SIRT1 confirmed the critical role of SIRT1 in ER stress, with PD's inhibitory effect on ER stress being dependent on SIRT1 expression. Additionally, PD attenuated ER stress-mediated neuronal apoptosis and SAH-induced ferroptosis through upregulation of SIRT1. Conclusion PD alleviates ER stress following SAH by upregulating SIRT1 expression, thereby mitigating early brain injury. The protective effects of PD are mediated through SIRT1, which inhibits ER stress and reduces neuronal apoptosis and ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoming Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Li H, Zhao Y, Wang J, Peng C, Tang K, Sun M, Yang Y, Liu Q, Liu F. Screening of potential antioxidant bioactive Q-markers of paeoniae radix rubra based on an integrated multimodal strategy. Front Pharmacol 2024; 15:1447959. [PMID: 39211775 PMCID: PMC11357914 DOI: 10.3389/fphar.2024.1447959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Paeoniae Radix Rubra (PRR) has been used widely to promote blood circulation and eliminate blood stasis in China clinical practice owing to its extensive pharmacological effects. However, the "quality markers" (Q-markers) of the antioxidant effects remains unknown. Object To explore the Q-markers of antioxidant activity based on multiple strategies, which would provide reference for the quality evaluation of PRR based on specific pharmacodynamic-oriented. Methods Firstly, the "fingerprint" profiles of 15 batches of PRR were acquired and identified by ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS/MS) and the common peaks extracted. Meanwhile, the MTT assay was used to evaluate the effect of 15 batches of PRR on H2O2-induced oxidative stress in HT-22 cells. The antioxidant activity of PRR was investigated simultaneously by superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) commercial kits. The relationship between common peaks and antioxidant indexes were constructed by grey relational analysis (GRA) and partial least squares-discriminant analysis (PLS-DA) for the identification of preselected Q-markers. Secondly, experimental verification was conducted to investigate the protective effect of the preliminary components on HT-22 cells undergoing oxidative stress. Finally, for the further validation of effectiveness of antioxidant Q-markers, network pharmacology was applied to explore potential targets, and the molecular docking technology was used to value the binding ability of the potential active components of PRR to the antioxidant targets. Results Thirty-seven common peaks from 15 batches of PRR were identified qualitatively by UHPLC-Q-TOF MS/MS. The MTT assay showed that PRR could reduce the oxidative damage induced by H2O2 upon HT-22 cells according to the index of MDA, SOD and GSH. Eight potential antioxidant components were screened by spectrum-effect correlation analysis: paeoniflorin, galloylpaeoniflorin, albiflorin, 1,2,3,4,6-o-pentagalloylglucose, benzoylpaeoniflorin, pinocembrin, oleanic acid, and isorhamnetin-3-o-nehesperidine. Each of these preliminary components showed significant protections on cellular oxidative stress (P < 0.05). Interleukin-6 (IL-6), protein kinase B (AKT1), and tumor necrosis factor (TNF) were predicted to be the major potential targets of PRR, and the good binding ability were presented between the potential active components of PRR and each target as a whole. Conclusion Eight components were identified as the antioxidant Q-markers of PRR based on an integrated multimodal strategy.
Collapse
Affiliation(s)
- Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yu Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiaqi Wang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Keyan Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mu Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
| | - Qingping Liu
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
6
|
Pan D, Qu Y, Shi C, Xu C, Zhang J, Du H, Chen X. Oleanolic acid and its analogues: promising therapeutics for kidney disease. Chin Med 2024; 19:74. [PMID: 38816880 PMCID: PMC11140902 DOI: 10.1186/s13020-024-00934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dan Pan
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Jie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
7
|
Zhu K, Bi S, Zhu Z, Zhang W, Yang X, Li J, Liang G, Yu C, Pan P. Edaravone dexborneol attenuates oxidative stress in experimental subarachnoid hemorrhage via Keap1/Nrf2 signaling pathway. Front Pharmacol 2024; 15:1342226. [PMID: 38873422 PMCID: PMC11169797 DOI: 10.3389/fphar.2024.1342226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Background Subarachnoid hemorrhage (SAH) serves as a disease characterized by high incidence rate, which is exceedingly prevalent and severe. Presently, there is no unambiguous or efficacious intervention for the neurological impairment following SAH. Administering multi-targeted neuroprotective agents to reduce oxidative stress (OS) and neuroinflammation caused by early brain injury (EBI) has been demonstrated to improve neurological function and prognosis following SAH. Edaravone dexborneol (EDB), a novel multi targeted neuroprotective medication, combines four parts edaravone (EDA) with 1 part (+)-borneol in proportion. Clinical trials conducted in China have revealed during 2 days of acute ischemic stroke (AIS), early administration of EDB leads to improved therapeutic outcomes compared to treatment in EDA monotherapy. Currently, there is no clear evidence that EDB can effectively treat SAH, therefore, our study aims to investigate its potential therapeutic effects and mechanisms on EBI after SAH. Method We used the intravascular threading method to establish a mouse model of SAH to explore whether EDA and EDB could produce anti-OS and anti-apoptosis effects. Behavioral assessment of mice was conducted using the balance beam experiment and the modified Garcia scoring system. Neuronal damage due to OS and Keap1/Nrf2 signaling pathway were detected through techniques of immunofluorescence, Western blotting, spectrophotometry. The group of EDA and EDB were injected intraperitoneally for 72 h after SAH. Results The experiment results indicated that EDB lead to remarkably positive results by significantly enhancing neurological function, reducing blood-brain barrier (BBB) injury, and effectively inhibiting neuronal apoptosis after SAH. Further examination indicated EDB significantly reduced the expression of Keap1 and increased the expression of Nrf2, and it inhibited MDA, and enhanced SOD activity after SAH. These outcomes surpassed the effectiveness observed in EDA monotherapy. However, the application of ML385 reversed the anti-OS effects of EDB and EDA. Conclusion Our experimental findings indicated that EDB could activate Keap1/Nrf2 signaling pathway to reduce OS damage, thereby protecting neurological function and enhancing behavioral abilities after SAH. These outcomes could facilitate the creation of new approaches for the clinical management of SAH.
Collapse
Affiliation(s)
- Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zechao Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, Liaoning, China
| | - Jiashuo Li
- China Medical University, Shenyang, Liaoning, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyong Yu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Pingale TD, Gupta GL. Oleanolic acid-based therapeutics ameliorate rotenone-induced motor and depressive behaviors in parkinsonian male mice via controlling neuroinflammation and activating Nrf2-BDNF-dopaminergic signaling pathways. Toxicol Mech Methods 2024; 34:335-349. [PMID: 38084769 DOI: 10.1080/15376516.2023.2288198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 04/20/2024]
Abstract
Parkinson's disease (PD) is often accompanied by depression, which may appear before motor signs. Oleanolic acid (OA), a pentacyclic triterpenoid substance, have many pharmacological properties. However, its efficacy in treating PD-related chronic unpredictable stress (CUS) is unknown. Our study used behavioral, biochemical, and immunohistochemical techniques to assess how OA affected PDrelated CUS. Rotenone (1 mg/kg i.p. for first 21 days) was used to induce Parkinsonism, and modest psychological & environmental stresses generated CUS (from day 22 to day 43) in animals. The study included daily i.p.administration of OA (5, 10, and 20 mg/kg) from day 1 to day 57 in male swiss albino mice. Animals were evaluated for behavioral, biochemical parameters, neurotransmitters, and immunohistochemical expression following the treatment. Results of the study revealed that treatment with OA at all doses alleviated the core symptoms of CUS linked to PD and improved motor and non-motor function. OA therapy significantly lowered IL-1β, TNF-α (p < 0.01, < 0.01, < 0.001), IL-6 (p < 0.05, < 0.01, < 0.001), oxidative stress (p < 0.05, < 0.01, < 0.01), and elevated norepinephrine (p < 0.05, < 0.01, < 0.01), dopamine, and serotonin (p < 0.05, < 0.01, < 0.001) levels. Moreover, OA therapy substantially reduced α-synuclein (p < 0.05, < 0.01, < 0.01) aggregation and increased BDNF (p < 0.05, < 0.01, < 0.001) & Nrf-2 (p < 0.05, < 0.01, < 0.01) levels, which boosts neuronal dopamine survival. The study's findings indicated that OA ameliorates depressive-like behavior persuaded by CUS in PD, decreases neuroinflammation, and improves neurotransmitter concentration via activating Nrf2-BDNF-dopaminergic pathway.
Collapse
Affiliation(s)
- Tanvi Dayanand Pingale
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
| | - Girdhari Lal Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai India
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur India
| |
Collapse
|
9
|
Xu H, Yuan Q, Wu Z, Xu Y, Chen J. Integrative transcriptome and single-cell sequencing technology analysis of the potential therapeutic benefits of oleanolic acid in liver injury and liver cancer. Aging (Albany NY) 2023; 15:15267-15286. [PMID: 38127054 PMCID: PMC10781501 DOI: 10.18632/aging.205349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Oleanolic acid has important hepatoprotective effects and inhibits liver tissue carcinogenesis. The aim of this study was to investigate the mechanism of action of oleanolic acid in inhibiting liver injury and liver cancer. METHOD In this study, we applied differential gene analysis and gene enrichment analysis to identify the targets of oleanolic acid for the treatment of liver injury. And this study also applied Cibersort and GSVA methods to investigate the targets of oleanolic acid in liver injury. Based on oleanolic acid targets, we explored the major targets and further explored the role of the major targets in liver cancer. This study used the oncoPredict and the TIDE algorithm to predict the effect of oleanolic acid on drug resistance. Finally, the binding effect of oleanolic acid to relevant targets was explored using molecular docking techniques. RESULT In this study, oleanolic acid was found to inhibit liver injury and promote liver regeneration mainly by promoting elevated expression of HMOX1. Oleanolic acid can inhibit oxidative stress and promotes Ferroptosis in liver injury. In liver cancer, we identified that the main target of oleanolic acid is HMOX1 and HDAC1. And we determined that HMOX1 promotes Ferroptosis in liver cancer. This reduced the sensitivity of liver cancer to targeted therapies and immunotherapy. Molecular docking showed high binding of oleanolic acid to HDAC1 and HMOX1. CONCLUSIONS Oleanolic acid is an antioxidant by promoting high expression of HMOX1 and promotes the development of Ferroptosis in liver cancer and liver injury.
Collapse
Affiliation(s)
- Hongji Xu
- Department of Abdominal Surgery, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiqiang Wu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingsong Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Yang H, Ding C, Cheng M, Sheng Z, Chen L, Chen J, Wang Y. Perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. Sci Rep 2023; 13:21320. [PMID: 38044382 PMCID: PMC10694148 DOI: 10.1038/s41598-023-48802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) occurs most commonly after rupture of an aneurysm, resulting in high disability and mortality due to the absence of effective therapy. Its subsequent stage, early brain injury (EBI), promotes the sustainable development of injury in the brain and ultimately leads to poor prognosis. As a new antiepileptic drug, the effect of perampanel on EBI after SAH is unknown. Pyroptosis, a process of inflammatory programmed cell death, has been confirmed in most studies to play a substantial role in aggravating SAH-post EBI. Similarly, oxidative stress is closely involved in neuronal pyroptosis and the pathophysiological mechanism of SAH-post EBI, leading to a devastating outcome for SAH patients. Nonetheless, no studies have been conducted to determine whether perampanel reduces pyroptosis and oxidative stress in the context of SAH-induced EBI. Rat SAH model via endovascular perforation was constructed in this study, to assess the neuroprotective effect of perampanel on SAH-post EBI, and to clarify the possible molecular mechanism. By means of the neurological score, brain edema detection, FJB staining, immunofluorescence, WB, ELISA, and ROS assay, we found that perampanel can improve neuroscores and reduce brain edema and neuronal degeneration at 24 h after SAH; we also found that perampanel reduced oxidative stress, neuronal pyroptosis, and inhibition of the SIRT3-FOXO3α pathway at 24 h after SAH. When 3-TYP, an inhibitor of SIRT3, was administered, the effects of perampanel on the SIRT3-FOXO3a pathway, antioxidant stress, and neuronal pyroptosis were reversed. Taken together, our data indicate that perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. This study highlights the application value of perampanel in subarachnoid hemorrhage and lays a foundation for clinical research and later transformation of perampanel in SAH.
Collapse
Affiliation(s)
- Hongqiao Yang
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Changgeng Ding
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Ming Cheng
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Zhengwei Sheng
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Lei Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Junhui Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
- The Fifth Clinical College of Anhui Medical University, Hefei, China.
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
- The Fifth Clinical College of Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Liu S, Qin HH, Ji XR, Gan JW, Sun MJ, Tao J, Tao ZQ, Zhao GN, Ma BX. Virtual Screening of Nrf2 Dietary-Derived Agonists and Safety by a New Deep-Learning Model and Verified In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8038-8049. [PMID: 37196215 DOI: 10.1021/acs.jafc.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an essential regulatory target of antioxidants, but the lack of Nrf2 active site information has hindered discovery of new Nrf2 agonists from food-derived compounds by large-scale virtual screening. Two deep-learning models were separately trained to screen for Nrf2-agonists and safety. The trained models screened potentially active chemicals from approximately 70,000 dietary compounds within 5 min. Of the 169 potential Nrf2 agonists identified via deep-learning screening, 137 had not been reported before. Six compounds selected from the new Nrf2 agonists significantly increased (p < 0.05) the activity of Nrf2 on carbon tetrachloride (CCl4)-intoxicated HepG2 cells (nicotiflorin (99.44 ± 18.5%), artemetin (97.91 ± 8.22%), daidzin (87.73 ± 3.77%), linonin (74.27 ± 5.73%), sinensetin (72.74 ± 10.41%), and tectoridin (77.78 ± 4.80%)), and their safety were demonstrated by an MTT assay. The safety and Nrf2 agonistic activity of nicotiflorin, artemetin, and daidzin were also reconfirm by a single-dose acute oral toxicity study and CCl4-intoxicated rat assay.
Collapse
Affiliation(s)
- Song Liu
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan-Huan Qin
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin-Ran Ji
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian-Wen Gan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Meng-Jia Sun
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jin Tao
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuo-Qi Tao
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guang-Nian Zhao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bing-Xin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|