1
|
Qiu X, Jiang M, Xu J, Wu Q, Lin C, Li W, Li Q. Molecular characterization of carbapenem resistance mechanisms and phenotypic correlations in clinical Klebsiella pneumoniae isolates from Ningbo, China. Front Microbiol 2025; 16:1546805. [PMID: 40438220 PMCID: PMC12116675 DOI: 10.3389/fmicb.2025.1546805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/30/2025] [Indexed: 06/01/2025] Open
Abstract
Objective The purpose of this study is to understand the antimicrobial susceptibility and molecular distribution characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) in the region, and to evaluate their correlation. Additionally, the study aims to investigate the transmission status of these strains. Methods A total of 150 CRKP collected from January 2019 to December 2021 in the Ningbo region were included in this study. Antimicrobial susceptibility testing was performed using broth microdilution method following CLSI guidelines (CLSI, 2023). The tested agents included: (1) basic antimicrobials (tigecycline, polymyxin B, ceftazidime-avibactam); and (2) combination therapy candidates (ertapenem, imipenem, levofloxacin, piperacillin-tazobactam, ceftriaxone, cefepime, trimethoprim-sulfamethoxazole, fosfomycin, amikacin, aztreonam, chloramphenicol, amoxicillin-clavulanate, ceftazidime). Resistance genes were detected using polymerase chain reaction (PCR). Multi-locus sequence typing (MLST) was employed to analyze the molecular characteristics and evolutionary trends of the strains to determine their clonal relationships. Results The 150 strains of CRKP exhibit high resistance rates to various conventional drugs; The sensitivity rates to tigecycline, polymyxin B, and ceftazidime-avibactam were 98.7, 98.0, and 68%, respectively; Conversely, the sensitivity rates to fosfomycin, amikacin, and chloramphenicol were 72.0, 40.0, and 16.7%, respectively; The main proportions of carbapemen genes producing in CRKP are as follows: KPC-2 (61.3%), NDM-5 (14.7%), IMP-4 (8.0%), OXA-232 (6.0%), and OXA-181 (1.3%); The main proportions of β-lactamase resistance genes are as follows: CTX-M-1 (13.33%), CTX-M-3 (25.33%), CTX-M-9 (17.33%), CTX-M-14 (34.67%), SHV-1 (26.66%), SHV-11 (66.66%), SHV-12 (18.66%), and SHV-28 (10.00%); CRKP carrying class A, B, and D carbapenemases had a sensitivity rate greater than 96% for tigecycline and polymyxin B, while their sensitivities to ceftazidime-avibactam, aztreonam, and amikacin varied significantly (p < 0.01). Analysis of the MLST results for CRKP revealed that ST11 strains were predominant in the region. There was a significant difference in the resistance genes carried by ST11 strains compared to non-ST11 strains. While different healthcare institutions exhibited variations in ST types, the strains generally showed high homogeneity. Conclusion In the region, CRKP showed high sensitivity to tigecycline, polymyxin B, ceftazidime-avibactam, fosfomycin, amikacin, and chloramphenicol. The main carbapenemase genes identified were KPC-2 and NDM-5. The inhibitory effects of ceftazidime-avibactam, aztreonam, and amikacin varied for CRKP carrying different enzyme types. ST11 strains were predominant in the region. There was a significant difference in the resistance genes carried by ST11 strains compared to non-ST11 strains. Clonal dissemination was observed both within the same healthcare institution and between different institutions.
Collapse
Affiliation(s)
- Xuedan Qiu
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo, China
| | - Min Jiang
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo, China
| | - Jianqiang Xu
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo, China
| | - Qiaoping Wu
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo, China
| | - Chenyao Lin
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo, China
| | - Weiying Li
- Department of Clinical Laboratory, Langxia Street Health Service Center, Ningbo, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Campos JV, Pontes JTC, Canales CSC, Roque-Borda CA, Pavan FR. Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides. BME FRONTIERS 2025; 6:0104. [PMID: 40041091 PMCID: PMC11876546 DOI: 10.34133/bmef.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Julia Valladares Campos
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Janaína Teixeira Costa Pontes
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa 04000, Peru
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
3
|
Chao S, Zhang Y, Hu Y, Chen Y, Li P, Sun Y, Song L, Hu Y, Wang H, Wu J, Lv B. Transgenic Maize of ZmMYB3R Shapes Microbiome on Adaxial and Abaxial Surface of Leaves to Promote Disease Resistance. Microorganisms 2025; 13:362. [PMID: 40005729 PMCID: PMC11858687 DOI: 10.3390/microorganisms13020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The phyllosphere is one of the largest habitats for microorganisms, and host genetic factors play an important role during the interaction between microorganisms and the phyllosphere. Therefore, the transgene may also lead to changes in the maize phyllosphere. ZmMYB3R was identified as a drought-tolerant gene in Arabisopsis. Here, we employed metagenomic sequencing to analyze the microbiome of the adaxial and abaxial leaf surfaces on ZmMYB3R-overexpressing (OE) and wild-type (WT)·maize, aiming to dissect the possible associations between ZmMYB3R and changes in phyllosphere microbiome functioning. Our results revealed that overexpressing ZmMYB3R altered the alpha and beta diversity of the phyllosphere microbiome. In OE plants, more beneficial microbes accumulated on the phyllosphere, while pathogenic ones diminished, especially on the abaxial surface of ZmMYB3R leaves. Further analysis of disease resistance-related metabolic pathways and abundances of disease resistance genes revealed significant differences between OE and WT. The inoculation experiment between OE and WT proved that ZmMYB3R increased the disease resistance of maize. In conclusion, the results reveal that transgenes affect the phyllosphere microbiome, and ZmMYB3R might alter leaf disease resistance by reshaping the phyllosphere microbiome structure. These findings help us understand how ZmMYB3R regulates leaf disease resistance and may facilitate the development of disease control by harnessing beneficial microbial communities.
Collapse
Affiliation(s)
- Shengqian Chao
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yin Zhang
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yue Hu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
| | - Yifan Chen
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Peng Li
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yu Sun
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Lili Song
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yingxiong Hu
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| | - Hui Wang
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beibei Lv
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| |
Collapse
|
4
|
Roque‐Borda CA, Primo LMDG, Medina‐Alarcón KP, Campos IC, Nascimento CDF, Saraiva MMS, Berchieri Junior A, Fusco‐Almeida AM, Mendes‐Giannini MJS, Perdigão J, Pavan FR, Albericio F. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410893. [PMID: 39530703 PMCID: PMC11714181 DOI: 10.1002/advs.202410893] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Polymicrobial biofilms adhere to surfaces and enhance pathogen resistance to conventional treatments, significantly contributing to chronic infections in the respiratory tract, oral cavity, chronic wounds, and on medical devices. This review examines antimicrobial peptides (AMPs) as a promising alternative to traditional antibiotics for treating biofilm-associated infections. AMPs, which can be produced as part of the innate immune response or synthesized therapeutically, have broad-spectrum antimicrobial activity, often disrupting microbial cell membranes and causing cell death. Many specifically target negatively charged bacterial membranes, unlike host cell membranes. Research shows AMPs effectively inhibit and disrupt polymicrobial biofilms and can enhance conventional antibiotics' efficacy. Preclinical and clinical research is advancing, with animal studies and clinical trials showing promise against multidrug-resistant bacteria and fungi. Numerous patents indicate increasing interest in AMPs. However, challenges such as peptide stability, potential cytotoxicity, and high production costs must be addressed. Ongoing research focuses on optimizing AMP structures, enhancing stability, and developing cost-effective production methods. In summary, AMPs offer a novel approach to combating biofilm-associated infections, with their unique mechanisms and synergistic potential with existing antibiotics positioning them as promising candidates for future treatments.
Collapse
Affiliation(s)
- Cesar Augusto Roque‐Borda
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
- Vicerrectorado de InvestigaciónUniversidad Católica de Santa MaríaArequipa04000Peru
| | - Laura Maria Duran Gleriani Primo
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Kaila Petronila Medina‐Alarcón
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Isabella C. Campos
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Mauro M. S. Saraiva
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Ana Marisa Fusco‐Almeida
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Maria José Soares Mendes‐Giannini
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - João Perdigão
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
| | - Fernando Rogério Pavan
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalDurban4001South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| |
Collapse
|
5
|
Roque-Borda CA, Primo LMDG, Franzyk H, Hansen PR, Pavan FR. Recent advances in the development of antimicrobial peptides against ESKAPE pathogens. Heliyon 2024; 10:e31958. [PMID: 38868046 PMCID: PMC11167364 DOI: 10.1016/j.heliyon.2024.e31958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Multi-drug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a global health threat. The severity of the problem lies in its impact on mortality, therapeutic limitations, the threat to public health, and the costs associated with managing infections caused by these resistant strains. Effectively addressing this challenge requires innovative approaches to research, the development of new antimicrobials, and more responsible antibiotic use practices globally. Antimicrobial peptides (AMPs) are a part of the innate immune system of all higher organisms. They are short, cationic and amphipathic molecules with broad-spectrum activity. AMPs interact with the negatively charged bacterial membrane. In recent years, AMPs have attracted considerable interest as potential antibiotics. However, AMPs have low bioavailability and short half-lives, which may be circumvented by chemical modification. This review presents recent in vitro and in silico strategies for the modification of AMPs to improve their stability and application in preclinical experiments.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
- Universidad Católica de Santa María, Vicerrectorado de Investigación, Arequipa, Peru
| | | | - Henrik Franzyk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, Denmark
| | - Paul Robert Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
6
|
Silva APB, Roque-Borda CA, Carnero Canales CS, Duran Gleriani Primo LM, Silva IC, Ribeiro CM, Chorilli M, da Silva PB, Silva JL, Pavan FR. Activity of Bacteriophage D29 Loaded on Nanoliposomes against Macrophages Infected with Mycobacterium tuberculosis. Diseases 2023; 11:150. [PMID: 37987261 PMCID: PMC10660732 DOI: 10.3390/diseases11040150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.
Collapse
Affiliation(s)
- Ana P. B. Silva
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Cesar Augusto Roque-Borda
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Christian S. Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Laura Maria Duran Gleriani Primo
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Isabel C. Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Camila M. Ribeiro
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Joás L. Silva
- National Heart, Lung, and Blood Institute, National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| |
Collapse
|
7
|
Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". Microorganisms 2023; 11:1912. [PMID: 37630472 PMCID: PMC10456941 DOI: 10.3390/microorganisms11081912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (S.Z.); (C.B.)
| | | | | | | | | |
Collapse
|
8
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
9
|
Han P, Ma A, Ning Y, Chen Z, Liu Y, Liu Z, Li S, Jia Y. Global gene-mining strategy for searching nonribosomal peptides as antimicrobial agents from microbial sources. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
10
|
Peng J, Wang Y, Wu Z, Mao C, Li L, Cao H, Qiu Z, Guo G, Liang G, Shen F. Antimicrobial Peptide Cec4 Eradicates Multidrug-Resistant Acinetobacter baumannii in vitro and in vivo. Drug Des Devel Ther 2023; 17:977-992. [PMID: 37020803 PMCID: PMC10069437 DOI: 10.2147/dddt.s405579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Acinetobacter baumannii has become a major difficulty in the treatment of bacteria-associated infection. The previously reported antimicrobial peptide Cec4 exhibited good and stable activity against A. baumannii in vitro, but the mechanisms and effects in vivo are elusive. Methods The effects of Cec4 on bacterial membrane permeability, membrane potential and bacterial reactive oxygen species were measured. The cell membrane localization of antimicrobial peptides was studied by fluorescence labelling. The ability of bacteria to develop resistance to antimicrobial peptides was studied by continuous induction, and transcriptome difference was analysed. The in vivo toxicity of Cec4 against nematodes and mice was studied, and the in vivo therapeutic potential of Cec4 against A. baumannii was assessed. Results Cec4 effectively cleared multidrug-resistant A. baumannii by altering bacterial cell membrane permeability, changing bacterial cell membrane polarity, and increasing bacterial intracellular reactive oxygen species. Cec4 affected the expression of the secretion system, outer membrane, and efflux pump genes of A. baumannii. In addition, the bacteria did not acquire stable drug-resistant ability. Cec4 at 1.024 mg/mL did not affect the proliferation of HeLa and HepG2 cells, and Cec4 at 45 mg/kg had little effect on the mortality of Caenorhabditis elegans, even the liver and kidney tissues of mouse. Most importantly, Cec4 could effectively improve the survival rates and reduce the bacterial load of various tissues in the mouse model of infection. Conclusion In conclusion, Cec4 can damage the cell membrane of bacteria, and the bacteria is not easy to produce resistance to Cec4. Besides, Cec4 has good potential for the treatment of multidrug-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Jian Peng
- Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yue Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Zhaoyin Wu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Chengju Mao
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Lu Li
- Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
| | - Huijun Cao
- Department of Cardiac Surgery, the affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
| | - Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Guo Guo
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Guiyou Liang
- Department of Cardiac Surgery, the affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Feng Shen
- Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Correspondence: Feng Shen; Guiyou Liang, Email ;
| |
Collapse
|