1
|
Gonzalez DA, Peel JH, Pagadala T, McHail DG, Cressman JR, Dumas TC. Analysis of hippocampal local field potentials by diffusion mapped delay coordinates. J Comput Neurosci 2024; 52:133-144. [PMID: 38581476 PMCID: PMC11035132 DOI: 10.1007/s10827-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
Spatial navigation through novel spaces and to known goal locations recruits multiple integrated structures in the mammalian brain. Within this extended network, the hippocampus enables formation and retrieval of cognitive spatial maps and contributes to decision making at choice points. Exploration and navigation to known goal locations produce synchronous activity of hippocampal neurons resulting in rhythmic oscillation events in local networks. Power of specific oscillatory frequencies and numbers of these events recorded in local field potentials correlate with distinct cognitive aspects of spatial navigation. Typically, oscillatory power in brain circuits is analyzed with Fourier transforms or short-time Fourier methods, which involve assumptions about the signal that are likely not true and fail to succinctly capture potentially informative features. To avoid such assumptions, we applied a method that combines manifold discovery techniques with dynamical systems theory, namely diffusion maps and Takens' time-delay embedding theory, that avoids limitations seen in traditional methods. This method, called diffusion mapped delay coordinates (DMDC), when applied to hippocampal signals recorded from juvenile rats freely navigating a Y-maze, replicates some outcomes seen with standard approaches and identifies age differences in dynamic states that traditional analyses are unable to detect. Thus, DMDC may serve as a suitable complement to more traditional analyses of LFPs recorded from behaving subjects that may enhance information yield.
Collapse
Affiliation(s)
- D A Gonzalez
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA
| | - J H Peel
- Department of Physics and Astronomy, George Mason University, Fairfax, VA, 22030, USA
| | - T Pagadala
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA
| | - D G McHail
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA
| | - J R Cressman
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA
- Department of Physics and Astronomy, George Mason University, Fairfax, VA, 22030, USA
| | - T C Dumas
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA.
- Psychology Department, George Mason University, 4400 University Drive, MS 2A1, Fairfax, VA, 22030, USA.
| |
Collapse
|
2
|
Mill NR, Ogoe RH, Valibeigi N, Chen D, Kimbal CL, Yoon SJ, Ganju S, Perdomo JA, Sardana A, McHail DG, Gonzalez DA, Dumas TC. Positive modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors differentially alters spatial learning and memory in juvenile rats younger and older than three weeks. Behav Pharmacol 2024; 35:79-91. [PMID: 38451022 PMCID: PMC10921984 DOI: 10.1097/fbp.0000000000000764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Remarkable performance improvements occur at the end of the third postnatal week in rodents tested in various tasks that require navigation according to spatial context. While alterations in hippocampal function at least partially subserve this cognitive advancement, physiological explanations remain incomplete. Previously, we discovered that developmental modifications to hippocampal glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in juvenile rats was related to more mature spontaneous alternation behavior in a symmetrical Y-maze. Moreover, a positive allosteric modulator of AMPA receptors enabled immature rats to alternate at rates seen in older animals, suggesting an excitatory synaptic limitation to hippocampal maturation. We then validated the Barnes maze for juvenile rats in order to test the effects of positive AMPA receptor modulation on a goal-directed spatial memory task. Here we report the effects of the AMPA receptor modulator, CX614, on spatial learning and memory in the Barnes maze. Similar to our prior report, animals just over 3 weeks of age display substantial improvements in learning and memory performance parameters compared to animals just under 3 weeks of age. A moderate dose of CX614 enabled immature animals to move more directly to the goal location, but only after 1 day of training. This performance improvement was observed on the second day of training with drug delivery or during a memory probe trial performed without drug delivery after the second day of training. Higher doses created more search errors, especially in more mature animals. Overall, CX614 provided modest performance benefits for immature rats in a goal-directed spatial memory task.
Collapse
Affiliation(s)
| | | | | | - Diyi Chen
- Interdisciplinary Program in Neuroscience
| | | | | | | | | | - Anjali Sardana
- James Madison High School, George Mason University, Fairfax, Virginia, USA
| | | | | | | |
Collapse
|
3
|
Chen YN, Kostka JK, Bitzenhofer SH, Hanganu-Opatz IL. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities. Curr Biol 2023; 33:4353-4366.e5. [PMID: 37729915 PMCID: PMC10617757 DOI: 10.1016/j.cub.2023.08.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The interplay between olfaction and higher cognitive processing has been documented in the adult brain; however, its development is poorly understood. In mice, shortly after birth, endogenous and stimulus-evoked activity in the olfactory bulb (OB) boosts the oscillatory entrainment of downstream lateral entorhinal cortex (LEC) and hippocampus (HP). However, it is unclear whether early OB activity has a long-lasting impact on entorhinal-hippocampal function and cognitive processing. Here, we chemogenetically silenced the synaptic outputs of mitral/tufted cells, the main projection neurons in the OB, during postnatal days 8-10. The transient manipulation leads to a long-lasting reduction of oscillatory coupling and weaker responsiveness to stimuli within developing entorhinal-hippocampal circuits accompanied by dendritic sparsification of LEC pyramidal neurons. Moreover, the transient silencing reduces the performance in behavioral tests involving entorhinal-hippocampal circuits later in life. Thus, neonatal OB activity is critical for the functional LEC-HP development and maturation of cognitive abilities.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
4
|
Olsen LC, Galler M, Witter MP, Saetrom P, O'Reilly KC. Transcriptional development of the hippocampus and the dorsal-intermediate-ventral axis in rats. Hippocampus 2023; 33:1028-1047. [PMID: 37280038 DOI: 10.1002/hipo.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Risk and resilience for neuropsychiatric illnesses are established during brain development, and transcriptional markers of risk may be identifiable in early development. The dorsal-ventral axis of the hippocampus has behavioral, electrophysiological, anatomical, and transcriptional gradients and abnormal hippocampus development is associated with autism, schizophrenia, epilepsy, and mood disorders. We previously showed that differential gene expression along the dorsoventral hippocampus in rats was present at birth (postnatal day 0, P0), and that a subset of differentially expressed genes (DEGs) was present at all postnatal ages examined (P0, P9, P18, and P60). Here, we extend the analysis of that gene expression data to understand the development of the hippocampus as a whole by examining DEGs that change with age. We additionally examine development of the dorsoventral axis by looking at DEGs along the axis at each age. Using both unsupervised and supervised analyses, we find that the majority of DEGs are present from P0 to P18, with many expression profiles presenting peaks or dips at P9/18. During development of the hippocampus, enriched pathways associated with learning, memory, and cognition increase with age, as do pathways associated with neurotransmission and synaptic function. Development of the dorsoventral axis is greatest at P9 and P18 and is marked by DEGs associated with metabolic functions. Our data indicate that neurodevelopmental disorders like epilepsy, schizophrenia and affective disorders are enriched with developmental DEGs in the hippocampus, regardless of dorsoventral location, with the greatest enrichment of these clinical disorders seen in genes whose expression changes from P0-9. When comparing DEGs from the ventral and dorsal poles, the greatest number of neurodevelopmental disorders is enriched with DEGs found at P18. Taken together, the developing hippocampus undergoes substantial transcriptional maturation during early postnatal development, with expression of genes involved in neurodevelopmental disorders also showing maximal expression changes within this developmental period.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Microbiology, St. Olavs Hospital, Trondheim, Norway
| | - Meital Galler
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Saetrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer and Information Science, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
5
|
Ni K, Liu H, Lai K, Shen L, Li X, Wang J, Shi H. Upregulation of A-type potassium channels suppresses neuronal excitability in hypoxic neonatal mice. FEBS J 2023; 290:4092-4106. [PMID: 37059697 DOI: 10.1111/febs.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Neuronal excitability is a critical feature of central nervous system development, playing a fundamental role in the functional maturation of brain regions, including the hippocampus, cerebellum, auditory and visual systems. The present study aimed to determine the mechanism by which hypoxia causes brain dysfunction through perturbation of neuronal excitability in a hypoxic neonatal mouse model. Functional brain development was assessed in humans using the Gesell Development Diagnosis Scale. In mice, gene transcription was evaluated via mRNA sequencing and quantitative PCR; furthermore, patch clamp recordings assessed potassium currents. Clinical observations revealed disrupted functional brain development in 6- and 18-month-old hypoxic neonates, and those born with normal hearing screening unexpectedly exhibited impaired central auditory function at 3 months. In model mice, CA1 pyramidal neurons exhibited reduced spontaneous activity, largely induced by excitatory synaptic input suppression, despite the elevated membrane excitability of hypoxic neurons compared to that of control neurons. In hypoxic neurons, Kcnd3 gene transcription was upregulated, confirming upregulated hippocampal Kv 4.3 expression. A-type potassium currents were enhanced, and Kv 4.3 participated in blocking excitatory presynaptic inputs. Elevated Kv 4.3 activity in pyramidal neurons under hypoxic conditions inhibited excitatory presynaptic inputs and further decreased neuronal excitability, disrupting functional brain development in hypoxic neonates.
Collapse
Affiliation(s)
- Kun Ni
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanwei Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Lai
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiping Wang
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ruby NF. Suppression of Circadian Timing and Its Impact on the Hippocampus. Front Neurosci 2021; 15:642376. [PMID: 33897354 PMCID: PMC8060574 DOI: 10.3389/fnins.2021.642376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
In this article, I describe the development of the disruptive phase shift (DPS) protocol and its utility for studying how circadian dysfunction impacts memory processing in the hippocampus. The suprachiasmatic nucleus (SCN) of the Siberian hamster is a labile circadian pacemaker that is easily rendered arrhythmic (ARR) by a simple manipulation of ambient lighting. The DPS protocol uses room lighting to administer a phase-advancing signal followed by a phase-delaying signal within one circadian cycle to suppress clock gene rhythms in the SCN. The main advantage of this model for inducing arrhythmia is that the DPS protocol is non-invasive; circadian rhythms are eliminated while leaving the animals neurologically and genetically intact. In the area of learning and memory, DPS arrhythmia produces much different results than arrhythmia by surgical ablation of the SCN. As I show, SCN ablation has little to no effect on memory. By contrast, DPS hamsters have an intact, but arrhythmic, SCN which produces severe deficits in memory tasks that are accompanied by fragmentation of electroencephalographic theta oscillations, increased synaptic inhibition in hippocampal circuits, and diminished responsiveness to cholinergic signaling in the dentate gyrus of the hippocampus. The studies reviewed here show that DPS hamsters are a promising model for translational studies of adult onset circadian dysfunction in humans.
Collapse
Affiliation(s)
- Norman F. Ruby
- Biology Department, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Sánchez-Aguilera A, Monedero G, Colino A, Vicente-Torres MÁ. Development of Action Potential Waveform in Hippocampal CA1 Pyramidal Neurons. Neuroscience 2020; 442:151-167. [PMID: 32634531 DOI: 10.1016/j.neuroscience.2020.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
CA1 pyramidal neurons undergo intense morphological and electrophysiological changes from the second to third postnatal weeks in rats throughout a critical period associated with the emergence of exploratory behavior. Using whole cell current-clamp recordings in vitro and neurochemical methods, we studied the development of the somatic action potential (AP) waveform and some of the underlying channels in this critical period. At the third postnatal week, APs showed a more hyperpolarized threshold, higher duration and amplitude. Subthreshold depolarization broadened APs and depolarized their peak overshoots more pronouncedly in immature neurons (2 weeks old). These features were mimicked by pharmacologically blocking the fast-inactivating A-type potassium current (IA) and matched well with the higher concentrations of Kv4.2 and Kv4.3 and the lower concentrations of BK and Kv1.2 channels detected by Western blotting. Repetitive stimulation with high frequency trains (50 Hz) reproduced AP broadening associated to inactivation of the A-type current in immature cells. Moreover, repetitive firing showed changes in AP amplitude consistent with the inactivation of both sodium and potassium subthreshold currents, which resulted in higher AP amplitudes in the more immature neurons. We propose that maturation of AP waveform and excitability in this critical developmental period could be related to the onset of exploratory behaviors.
Collapse
Affiliation(s)
- Alberto Sánchez-Aguilera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); IdISSC, Avda Complutense s/n, 28040 Madrid, Spain; Instituto Cajal, CSIC, Avda Doctor Arce 37, 28002 Madrid, Spain.
| | - Gonzalo Monedero
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); IdISSC, Avda Complutense s/n, 28040 Madrid, Spain
| | - Asunción Colino
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); IdISSC, Avda Complutense s/n, 28040 Madrid, Spain
| | - María Ángeles Vicente-Torres
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); IdISSC, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
8
|
McHail DG, Dumas TC. Hippocampal gamma rhythms during Y‐maze navigation in the juvenile rat. Hippocampus 2020; 30:505-525. [DOI: 10.1002/hipo.23168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel G. McHail
- Interdisciplinary Program in NeuroscienceGeorge Mason University Fairfax Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in NeuroscienceGeorge Mason University Fairfax Virginia
- Psychology DepartmentGeorge Mason University Fairfax Virginia
| |
Collapse
|
9
|
Holahan MR, Tzakis N, Oliveira FA. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan. Front Aging Neurosci 2019; 11:253. [PMID: 31572169 PMCID: PMC6749050 DOI: 10.3389/fnagi.2019.00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023] Open
Abstract
An important aspect concerning the underlying nature of memory function is an understanding of how memories are acquired and lost. The stability, and ultimate demise, of memory over the lifespan of an organism remains a critical topic in determining the neurobiological mechanisms that mediate memory representations. This has important implications for the elucidation and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). One important question in the context of preserving functional plasticity over the lifespan is the determination of the neurobiological structural and functional changes that contribute to the formation of memory during the juvenile time frame that might provide protection against later memory dysfunction by promoting the establishment of redundant neural pathways. The main question being, if memory formation during the juvenile period does strengthen and preserve memory stability over the lifespan, what are the neurobiological structural or functional substrates that mediate this effect? One neural attribute whose function may be altered with early life experience and provide a mechanism to preserve memory through the lifespan is glucose transport-linked calcium (Ca2+) buffering. Because peak increases in glucose utilization overlap with a timeframe during which spatial training can enhance later memory processing, it might be the case that learning-associated changes in glucose utilization would provide an important neural functional change to preserve memory function throughout the lifespan. The glucose transporters are proteins that are reduced in AD pathology and there is evidence that glucose reductions can impair Ca2+ buffering. In the absence of an appropriate supply of ATP, provided via glucose transport and glycolysis, Ca2+ levels can rise leading to neural vulnerability with ensuing pathological outcomes. In this review, we explore the hypothesis that enhancing glucose utilization with spatial training during the preadolescent period will provide a functional enhancement that regulates glucose-dependent Ca2+ signaling during aging or neurodegeneration and provide essential neural resources to preserve functional plasticity and memory function.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Niko Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Fernando A. Oliveira
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
10
|
McHail DG, Valibeigi N, Dumas TC. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem 2018; 25:138-146. [PMID: 29449458 PMCID: PMC5817281 DOI: 10.1101/lm.046300.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
Abstract
The neural bases of cognition may be greatly informed by relating temporally defined developmental changes in behavior with concurrent alterations in neural function. A robust improvement in performance in spatial learning and memory tasks occurs at 3 wk of age in rodents. We reported that the developmental increase of spontaneous alternation in a Y-maze was related to changes in temporal dynamics of fast glutamatergic synaptic transmission in the hippocampus. We also showed that, during allothetic behaviors in the Y-maze, network oscillation power increased at frequency bands known to support spatial learning and memory in adults. However, there are no discrete learning and memory phases during free exploration in the Y-maze. Thus, we adapted the Barnes maze for use with juvenile rats. Following a single platform exposure in dim light on the day before training (to encourage exploration), animals were trained on the subsequent 2 d in bright light to find a hidden escape box and then underwent a memory test 24 h later. During escape training, the older animals learned the task in 1 d, while the younger animals required 2 d and did not reach the performance of older animals. Long-term memory performance was also superior in the older animals. Thus, we have validated the use of the Barnes maze for this developmental period and established a timeline for the ontogeny of spatial navigation ability in this maze around 3 wk of age. Subsequent work will pair in vivo recording of hippocampal oscillations and single units with this task to help identify how hippocampal maturation might relate to performance improvements.
Collapse
Affiliation(s)
- Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Nazanin Valibeigi
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
- Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
11
|
Guan W, Cao JW, Liu LY, Zhao ZH, Fu Y, Yu YC. Eye opening differentially modulates inhibitory synaptic transmission in the developing visual cortex. eLife 2017; 6:32337. [PMID: 29227249 PMCID: PMC5746341 DOI: 10.7554/elife.32337] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022] Open
Abstract
Eye opening, a natural and timed event during animal development, influences cortical circuit assembly and maturation; yet, little is known about its precise effect on inhibitory synaptic connections. Here, we show that coinciding with eye opening, the strength of unitary inhibitory postsynaptic currents (uIPSCs) from somatostatin-expressing interneurons (Sst-INs) to nearby excitatory neurons, but not interneurons, sharply decreases in layer 2/3 of the mouse visual cortex. In contrast, the strength of uIPSCs from fast-spiking interneurons (FS-INs) to excitatory neurons significantly increases during eye opening. More importantly, these developmental changes can be prevented by dark rearing or binocular lid suture, and reproduced by the artificial opening of sutured lids. Mechanistically, this differential maturation of synaptic transmission is accompanied by a significant change in the postsynaptic quantal size. Together, our study reveals a differential regulation in GABAergic circuits in the cortex driven by eye opening may be crucial for cortical maturation and function.
Collapse
Affiliation(s)
- Wuqiang Guan
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jun-Wei Cao
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lin-Yun Liu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhi-Hao Zhao
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Coronel-Oliveros CM, Pacheco-Calderón R. Prenatal exposure to ketamine in rats: Implications on animal models of schizophrenia. Dev Psychobiol 2017; 60:30-42. [DOI: 10.1002/dev.21586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Carlos M. Coronel-Oliveros
- Laboratorio de Neurociencias y Comportamiento (LabNeC); Centro de Estudios en Zoología Aplicada (CEZA); Facultad Experimental de Ciencias y Tecnología (FACyT); Universidad de Carabobo; Valencia Venezuela
| | - Renny Pacheco-Calderón
- Laboratorio de Neurociencias y Comportamiento (LabNeC); Centro de Estudios en Zoología Aplicada (CEZA); Facultad Experimental de Ciencias y Tecnología (FACyT); Universidad de Carabobo; Valencia Venezuela
| |
Collapse
|
13
|
A transient insulin system dysfunction in newborn rat brain followed by neonatal intracerebroventricular administration of streptozotocin could be accompanied by a labile cognitive impairment. Neurosci Res 2017; 132:17-25. [PMID: 29055675 DOI: 10.1016/j.neures.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/16/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023]
Abstract
The early postnatal period is a critical period of hippocampus development, which is highly dependent on insulin receptor (IR) signaling and very important in cognitive function. The present study was conducted in order to present a model of neonatal transient brain insulin system dysfunction through finding an appropriate dose of injection of streptozotocin (STZ) during the neonatal period. Sixty male Wistar rat pups were divided into 4 groups of 15 and received intracerebroventricular saline or STZ (icv-STZ) (15, 20 and 25μg/kg) on postnatal day 7. Gene expression of IR and target genes for IR signaling (choline acetyltransferase (ChAT) and Tau) were measured at the ages of 2 and 7 weeks. Behavioral tests were performed at the ages of 3 and 6 weeks to assess short- and long-term cognitive function. 20μg/kg dose of icv-STZ was estimated as the optimal dose causing transient alteration in gene expression of IR, ChAT and Tau. Additionally, cognitive function of the animals restored to normal level at the age of 6 weeks. Therefore, 20μg/kg dose of icv-STZ is proposed as a new approach to generating transient brain insulin system dysfunction associated with transient cognitive impairments at a critical postnatal period of brain development.
Collapse
|
14
|
Stoneham ET, McHail DG, Boggs KN, Albani SH, Carty JA, Evans RC, Hamilton KA, Saadat VM, Hussain S, Greer ME, Dumas TC. Functional perturbation of forebrain principal neurons reveals differential effects in novel and well-learned tasks. Brain Res 2017; 1671:1-13. [PMID: 28666957 DOI: 10.1016/j.brainres.2017.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Neural circuits in mammalian brains consist of large numbers of different cell types having different functional properties. To better understand the separate roles of individual neuron types in specific aspects of spatial learning and memory, we perturbed the function of principal neurons in vivo during maze performance or in hippocampal slices during recording of evoked excitatory synaptic potentials. Transgenic mice expressing the Drosophila allatostatin receptor (AlstR) in cortical and hippocampal pyramidal cells were tested on an elevated plus maze, in a Y-maze, and in the Morris water maze. Relative to a control cohort, AlstR-positive mice treated with allatostatin exhibited no difference in open arm dwell time on the elevated plus maze or total number of arm entries in a Y-maze, but displayed reduced spontaneous alternation. When animals received massed or spaced training trials in the Morris water maze, and the peptide was delivered prior to an immediate probe, no effects on performance were observed. When the peptide was delivered during a probe trial performed 24h after seven days of spaced training, allatostatin delivery to AlstR positive mice enhanced direct navigation to the escape platform. Combined, these results suggest that cortical and hippocampal pyramidal neurons are required during spatial decision-making in a novel environment and compete with other neural systems after extended training in a long-term reference memory task. In hippocampal slices collected from AlstR positive animals, allatostatin delivery produced frequency dependent alterations in the Schaffer collateral fiber volley (attenuated accommodation at 100Hz) and excitatory postsynaptic potential (attenuated facilitation at 5Hz). Combined, the neural and behavioral discoveries support the involvement of short-term plasticity of Schaffer collateral axons and synapses during exploration of a novel environment and during initial orientation to a goal in a well-learned setting.
Collapse
Affiliation(s)
- Emily T Stoneham
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Daniel G McHail
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Katelyn N Boggs
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Sarah H Albani
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Jason A Carty
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Rebekah C Evans
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Kelly A Hamilton
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Victoria M Saadat
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Samanza Hussain
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Maggie E Greer
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA
| | - Theodore C Dumas
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
15
|
Tan HM, Wills TJ, Cacucci F. The development of spatial and memory circuits in the rat. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016. [DOI: 10.10.1002/wcs.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui Min Tan
- Singapore Institute for Clinical SciencesSingapore
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, Division of BiosciencesUniversity College LondonLondonUK
| |
Collapse
|
16
|
Tan HM, Wills TJ, Cacucci F. The development of spatial and memory circuits in the rat. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [DOI: 10.1002/wcs.1424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Min Tan
- Singapore Institute for Clinical SciencesSingapore
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, Division of BiosciencesUniversity College LondonLondonUK
| |
Collapse
|
17
|
The effect of AMPA receptor blockade on spatial information acquisition, consolidation and expression in juvenile rats. Neurobiol Learn Mem 2016; 133:145-156. [PMID: 27353718 DOI: 10.1016/j.nlm.2016.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
Improvement on spatial tasks in rats is observed during a late, postnatal developmental period (post-natal day (PND) 18 - PND 20). The developmental emergence of this spatial function occurs in conjunction with hippocampal connectivity changes and enhanced hippocampal-AMPA receptor-mediated synaptic responses. The current work investigated the effect of AMPAr blockade on the emergence and long-term storage of spatial information in juvenile rats and associated neural activity patterns in the dorsal hippocampus CA1 region. Male, Long Evans rats between the ages of PND 18 and PND 20 were systemically (i.p.) administered the AMPAr antagonist, NBQX, (0, 5 or 10mg/kg) every day prior to hidden platform water maze training (PND 18, 19 and 20), every day immediately post-training or immediately before the probe test (PND 41). NBQX administration prior to training prolonged latencies, pathlength and increased thigmotaxis during the acquisition phase. Administration of NBQX immediately posttraining had no effect on the day-to-day performance. When given a probe test 3weeks later, the saline group across all conditions spent more time in the target quadrant. Rats treated with pretraining 5mg NBQX dose showed a preference for the target quadrant while the posttraining and pretesting 5mg NBQX doses impaired the target quadrant preference. Groups injected with 10mg of NBQX pretraining, posttraining or pretesting did not show a preference for the target quadrant. c-Fos labeling in the CA1 reflected these differences in probe performance in that groups showing greater than chance dwell time in the target quadrant showed more c-Fos labeling in the CA1 region than groups that did not show a target quadrant preference. These findings provide support for the critical role of AMPA receptor-mediated function in the organization and long-term storage of spatial memories acquired during the juvenile period.
Collapse
|
18
|
Comba R, Gervais N, Mumby D, Holahan M. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats. F1000Res 2015; 4:396. [PMID: 26925223 PMCID: PMC4712777 DOI: 10.12688/f1000research.6822.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 11/28/2022] Open
Abstract
Improvement on spatial tasks is observed during a late, postnatal developmental period (PND18 – PND24). The purpose of the current work was 1) to determine whether the emergence of spatial-behavioral function was based on the ability to generate appropriate behavioral output; 2) to assess whether mossy fiber connectivity patterns preceded the emergence of spatial-behavioral function; 3) to explore functional changes in the hippocampus to determine whether activity in hippocampal networks occurred in a training-dependent or developmentally-dependent fashion. To these ends, male, Long Evans rats were trained on a spatial water or dry maze task for one day (PND16, PND18 or PND20) then euthanized. Training on these 2 tasks with opposing behavioral demands (swimming versus exploration) was hypothesized to control for behavioral topology. Only at PND20 was there evidence of spatial-behavioral function for both tasks. Examination of synaptophysin staining in the CA3 region (i.e., mossy fiber projections) revealed enhanced connectivity patterns that preceded the emergence of spatial behavior. Analysis of c-Fos labeling (functional changes) revealed developmentally-dependent increases in c-Fos positive cells in the dentate gyrus, CA3 and CA1 regions whereas training-dependent increases were noted in the CA3 and CA1 regions for the water-maze trained groups. Results suggest that changes in mossy fiber connectivity in association with enhanced hippocampal functioning precede the emergence of spatial behavior observed at PND20. The combination of neuroanatomical and behavioural results confirms the hypothesis that this time represents a sensitive period for hippocampal development and modification and the emergence of spatial/ cognitive function.
Collapse
Affiliation(s)
- Rachel Comba
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Nicole Gervais
- Department of Psychology, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Dave Mumby
- Department of Psychology, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Matthew Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
19
|
McHail DG, Dumas TC. Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development. Dev Cogn Neurosci 2015; 12:145-54. [PMID: 25752732 PMCID: PMC4887277 DOI: 10.1016/j.dcn.2015.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/22/2015] [Indexed: 11/01/2022] Open
Abstract
Metaplasticity refers to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Numerous forms of developmental metaplasticity are observed at Schaffer collateral synapses in the rat hippocampus at the end of the third postnatal week. Emergence of spatial learning and memory at this developmental stage suggests possible involvement of metaplasticity in the final maturation of the hippocampus. Three distinct metaplastic phenomena are apparent. (1) As transmitter release probability increases with increasing age, presynaptic potentiation is reduced. (2) Alterations in the composition and channel conductance properties of AMPARs facilitate the induction of postsynaptic potentiation with increasing age. (3) Low frequency stimulation inhibits subsequent induction of potentiation in animals older but not younger than 3 weeks of age. Thus, many forms of plasticity expressed at SC-CA1 synapses are different in rats younger and older than 3 weeks of age, illustrating the complex orchestration of physiological modifications that underlie the maturation of hippocampal excitatory synaptic transmission. This review paper describes three late postnatal modifications to synaptic plasticity induction in the hippocampus and attempts to relate these metaplastic changes to developmental alterations in hippocampal network activity and the maturation of contextual learning.
Collapse
Affiliation(s)
- Daniel G McHail
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - Theodore C Dumas
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States.
| |
Collapse
|
20
|
Albani SH, Andrawis MM, Abella RJH, Fulghum JT, Vafamand N, Dumas TC. Behavior in the elevated plus maze is differentially affected by testing conditions in rats under and over three weeks of age. Front Behav Neurosci 2015; 9:31. [PMID: 25741257 PMCID: PMC4330883 DOI: 10.3389/fnbeh.2015.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/28/2015] [Indexed: 12/01/2022] Open
Abstract
The late postnatal period in rats is marked by numerous changes in perceptual and cognitive abilities. As such, age-related variation in cognitive test performance might result in part from disparate sensitivities to environmental factors. To better understand how testing conditions might interact with age, we assessed anxiety behavior on an elevated plus maze (EPM) in juvenile rats around 3 weeks of age under diverse testing conditions. Plasma corticosterone and neuronal activation patterns in the forebrain were examined after maze exposure. We found that anxiety was differentially expressed during different stages of late postnatal development. Bright illumination and morning testing encouraged greatest open arm exploration on the EPM in younger animals, while older rats explored open areas more under dim illumination in the morning compared to bright illumination in the afternoon/evening. Older rats exhibited higher plasma corticosterone levels at baseline compared to younger rats; however, this trend was reversed for post-testing corticosterone. Additionally, post-testing corticosterone levels were inversely related to time of testing. Compared to testing in the morning, EPM exposure in the afternoon/evening elicited greater neuronal Arc expression in the amygdala. Arc expression in the amygdala after morning testing was greater at P22–24 than P17–19. In layer 2/3 of primary visual cortex, Arc expression was elevated in younger animals and age interacted with time of testing to produce opposing effects at P17–19 and P22–24. These data suggest that age-related differences in anxiety-associated behavior during the late postnatal period are due in part to changes in light sensitivity and emergence of a circadian cycle for corticosterone. The findings illustrate that late postnatal behavioral development in rodents is a complex orchestration of changes in neural systems involved in perception, cognition, affect and homeostatic regulation.
Collapse
Affiliation(s)
- Sarah H Albani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Marina M Andrawis
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Rio Jeane H Abella
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - John T Fulghum
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Naghmeh Vafamand
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Theodore C Dumas
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| |
Collapse
|
21
|
Evans RC, Herin GA, Hawes SL, Blackwell KT. Calcium-dependent inactivation of calcium channels in the medial striatum increases at eye opening. J Neurophysiol 2015; 113:2979-86. [PMID: 25673739 DOI: 10.1152/jn.00818.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023] Open
Abstract
Influx of calcium through voltage-gated calcium channels (VGCCs) is essential for striatal function and plasticity. VGCCs expressed in striatal neurons have varying kinetics, voltage dependences, and densities resulting in heterogeneous subcellular calcium dynamics. One factor that determines the calcium dynamics in striatal medium spiny neurons is inactivation of VGCCs. Aside from voltage-dependent inactivation, VGCCs undergo calcium-dependent inactivation (CDI): inactivating in response to an influx of calcium. CDI is a negative feedback control mechanism; however, its contribution to striatal neuron function is unknown. Furthermore, although the density of VGCC expression changes with development, it is unclear whether CDI changes with development. Because calcium influx through L-type calcium channels is required for striatal synaptic depression, a change in CDI could contribute to age-dependent changes in striatal synaptic plasticity. Here we use whole cell voltage clamp to characterize CDI over developmental stages and across striatal regions. We find that CDI increases at the age of eye opening in the medial striatum but not the lateral striatum. The developmental increase in CDI mostly involves L-type channels, although calcium influx through non-L-type channels contributes to the CDI in both age groups. Agents that enhance protein kinase A (PKA) phosphorylation of calcium channels reduce the magnitude of CDI after eye opening, suggesting that the developmental increase in CDI may be related to a reduction in the phosphorylation state of the L-type calcium channel. These results are the first to show that modifications in striatal neuron properties correlate with changes to sensory input.
Collapse
Affiliation(s)
- R C Evans
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| | - G A Herin
- Eastern Mennonite University, Harrisonburg, Virginia
| | - S L Hawes
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| | - K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| |
Collapse
|
22
|
Albani SH, McHail DG, Dumas TC. Developmental studies of the hippocampus and hippocampal-dependent behaviors: insights from interdisciplinary studies and tips for new investigators. Neurosci Biobehav Rev 2014; 43:183-90. [PMID: 24769291 DOI: 10.1016/j.neubiorev.2014.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 01/17/2023]
Abstract
The hippocampus is not fully developed at birth and, with respect to spatial cognition, only begins to show signs of adult-like function at three postnatal weeks in rodents. Studying the developmental period spanning roughly two to four weeks of age permits an understanding of the neural framework necessary for the emergence of spatial navigation and, quite possibly, human episodic memory. However, due to developmental factors, behavior data collection and interpretation can be severely compromised if inappropriate designs are applied. As such, we propose methodological considerations for the behavioral assessment of hippocampal function in developing rats that take into account animal size, growth rate, and sensory and motor ability. We further summarize recent key interdisciplinary studies that are beginning to unravel the molecular machinery and physiological alterations responsible for hippocampal maturation. In general, hippocampal development is a protracted process during which unique contributions to spatial cognition and complex recognition memory come "on line" at different postnatal ages creating a unique situation for elucidating the neural bases of specific components of higher cognitive abilities.
Collapse
Affiliation(s)
- Sarah H Albani
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - Daniel G McHail
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - Theodore C Dumas
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States.
| |
Collapse
|
23
|
Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats. J Neurosci 2013; 33:12218-28. [PMID: 23884930 DOI: 10.1523/jneurosci.4827-12.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely "turns on" the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation.
Collapse
|
24
|
Sari Y, Franklin KM, Alazizi A, Rao PSS, Bell RL. Effects of ceftriaxone on the acquisition and maintenance of ethanol drinking in peri-adolescent and adult female alcohol-preferring (P) rats. Neuroscience 2013; 241:229-38. [PMID: 23537837 DOI: 10.1016/j.neuroscience.2013.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/15/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Increased glutamatergic neurotransmission appears to mediate the reinforcing properties of drugs of abuse, including ethanol (EtOH). We recently reported that the administration of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1) levels/activity, decreased the maintenance of EtOH intake in adult male alcohol-preferring (P) rats. In the present study, we tested whether CEF administration would reduce the acquisition and maintenance of EtOH drinking in adolescent and adult female P rats. The rats were treated with saline or 200mg/kg ceftriaxone for 7 days (starting at 35 or 75 days old, respectively) followed by the EtOH acquisition test. Five weeks later the effects of CEF were examined regarding the maintenance of EtOH intake. For the maintenance test, half of the animals that received CEF during acquisition received CEF for 7 days and the other half received saline for 7 days. Saline-treated acquisition animals were treated similarly. The results indicated that pretreatment with ceftriaxone reduced the maintenance of EtOH intake in both animals that started as adolescents and those that started as adults. However, the beneficial effect of CEF was more pronounced in rats pretreated with CEF as adults compared with rats pretreated as adolescents. Reductions in EtOH intake by ceftriaxone were paralleled by an upregulation of GLT1 protein levels in both the nucleus accumbens (∼25% in rats starting at both ages) and prefrontal cortex (∼50% in rats starting as peri-adolescents and ∼65% in those starting as adults). These findings provide further support for GLT1-associated mechanisms in high alcohol-consuming behavior, and hold promise for the development of effective treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Y Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA.
| | | | | | | | | |
Collapse
|
25
|
Dumas TC. Postnatal alterations in induction threshold and expression magnitude of long-term potentiation and long-term depression at hippocampal synapses. Hippocampus 2010; 22:188-99. [PMID: 21069779 DOI: 10.1002/hipo.20881] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2010] [Indexed: 11/05/2022]
Abstract
Activity-dependent synaptic plasticity refines neural networks during development and subserves information processing in adulthood. Previous research has revealed postnatal alterations in synaptic plasticity at nearly all forebrain synapses, suggesting different forms of synaptic plasticity may contribute to network development and information processing. To assess possible relationships between modifications in synaptic plasticity and maturation of cognitive ability, we examined excitatory synaptic function in area CA1 of the mouse hippocampus ∼3 weeks of age, when hippocampal-dependent learning and memory abilities first emerge. Long-term potentiation (LTP) and depression (LTD) of synaptic efficacy were observed in slices from juvenile animals younger than 3 weeks of age. Both pre- and postsynaptic mechanisms supported LTP and LTD in juveniles. After the third postnatal week, the magnitude of LTP was reduced and the threshold for postsynaptic induction was reduced, but the threshold for presynaptic induction was increased. The reduced threshold for postsynaptic LTP appeared to be due, partly, to an increase in baseline excitatory synaptic strength, which likely permitted greater postsynaptic depolarization during induction. Low frequency stimulation did not induce LTD at this more mature stage, but it blocked subsequent induction of LTP, suggesting metaplastic differences across age groups. Late postnatal modifications in activity-dependent synaptic plasticity might reflect attenuation of mechanisms more closely tied to network formation (presynaptic potentiation and pre- and postsynaptic depression) and unmasking of mechanisms underlying information processing and storage (associative postsynaptic potentiation), which likely impact the integrative capacity of the network and regulate the emergence of adult-like cognitive abilities.
Collapse
Affiliation(s)
- Theodore C Dumas
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.
| |
Collapse
|
26
|
Del Giudice M. Alone in the dark? Modeling the conditions for visual experience in human fetuses. Dev Psychobiol 2010; 53:214-9. [DOI: 10.1002/dev.20506] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 09/14/2010] [Indexed: 11/09/2022]
|
27
|
Stoneham ET, Sanders EM, Sanyal M, Dumas TC. Rules of engagement: factors that regulate activity-dependent synaptic plasticity during neural network development. THE BIOLOGICAL BULLETIN 2010; 219:81-99. [PMID: 20972254 DOI: 10.1086/bblv219n2p81] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.
Collapse
Affiliation(s)
- Emily T Stoneham
- Molecular Neuroscience Department, George MasonUniversity, Fairfax, Virginia 22030, USA
| | | | | | | |
Collapse
|
28
|
O'Reilly M, Vollmer B, Vargha-Khadem F, Neville B, Connelly A, Wyatt J, Timms C, de Haan M. Ophthalmological, cognitive, electrophysiological and MRI assessment of visual processing in preterm children without major neuromotor impairment. Dev Sci 2010; 13:692-705. [PMID: 20712735 DOI: 10.1111/j.1467-7687.2009.00925.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many studies report chronic deficits in visual processing in children born preterm. We investigated whether functional abnormalities in visual processing exist in children born preterm but without major neuromotor impairment (i.e. cerebral palsy). Twelve such children (< 33 weeks gestation or birthweight < 1000 g) without major neuromotor impairment and 12 born full-term controls were assessed at 8-12 years of age by means of ophthalmological assessment (visual acuity, colour vision, stereopsis, stereoacuity, visual fields, ocular motility, motor fusion), cognitive tests of visual-motor, visual-perceptual and visual-spatial skills and pattern-reversal visual evoked potentials (PR-VEPs). All participants also underwent magnetic resonance imaging (MRI) of the brain and neuromotor assessments. No significant differences were found between the groups on the ophthalmological, visual cognitive, neurological, neuromotor or MRI measures. The P100 component of the PR-VEP showed a significantly shorter latency in the preterm compared with the full-term participants. Whilst this P100 finding suggests that subtle abnormalities may exist at the neurophysiological level, we conclude that visual dysfunction is not systematically associated with preterm birth in the context of normal neurological status.
Collapse
Affiliation(s)
- Michelle O'Reilly
- Developmental Cognitive Neuroscience Unit, UCL Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bryan KJ, Mudd JC, Richardson SL, Chang J, Lee HG, Zhu X, Smith MA, Casadesus G. Down-regulation of serum gonadotropins is as effective as estrogen replacement at improving menopause-associated cognitive deficits. J Neurochem 2009; 112:870-81. [PMID: 19943850 DOI: 10.1111/j.1471-4159.2009.06502.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Declining levels of estrogen in women result in increases in gonadotropins such as luteinizing hormone (LH) through loss of feedback inhibition. LH, like estrogen, is modulated by hormone replacement therapy. However, the role of post-menopausal gonadotropin increases on cognition has not been evaluated. Here, we demonstrate that the down-regulation of ovariectomy-driven LH elevations using the gonadotropin releasing hormone super-analogue, leuprolide acetate, improves cognitive function in the Morris water maze and Y-maze tests in the absence of E2. Furthermore, our data suggest that these effects are independent of the modulation of estrogen receptors alpha and beta, or activation of CYP19 and StAR, associated with the production of endogenous E2. Importantly, pathways associated with improved cognition such as CaMKII and GluR1-Ser831 are up-regulated by leuprolide treatment but not by chronic long-term E2 replacement suggesting independent cognition-modulating properties. Our findings suggest that down-regulation of gonadotropins is as effective as E2 in modulating cognition but likely acts through different molecular mechanisms. These findings provide a potential novel protective strategy to treat menopause/age-related cognitive decline and/or prevent the development of AD.
Collapse
Affiliation(s)
- Kathryn J Bryan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ebrahimi CM, Rankin CH. Early patterned stimulation leads to changes in adult behavior and gene expression in C. elegans. GENES BRAIN AND BEHAVIOR 2006; 6:517-28. [PMID: 17054718 DOI: 10.1111/j.1601-183x.2006.00278.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Across phylogeny, early experience plays a critical role in nervous system development. In these experiments, we investigated the long-term effects that specific patterns of sensory experience during development had on the biology and function of the Caenorhabditis elegans nervous system. The delivery of a specific pattern of mechanosensory stimulation in the first larval stage (L1) produced significant enhancement in the tap withdrawal behavioral response, expression patterns of an ionotropic glutamate receptor (iGluR) subunit and mRNA levels for that receptor in 3-day-old adult worms and a depression of these same three measures in 5-day-old adult worms. A critical period for the 3-day enhanced behavior and GLR distribution was observed in L1, whereas there was no critical period for the depressed effects observed in 5-day-old worms. The spaced pattern of stimulation was essential for expression of this effect: Various forms of massed training produced neither the enhancement at 3 days nor the depression at 5 days. The 5-day depressed behavioral response had many features in common with long-term memory, including sensitivity to disruption following retrieval. The different behavioral and molecular effects that early patterned mechanosensory stimulation produced in 3 and 5-day-old worms led us to hypothesize that separate cellular phenomena produced the enhanced 3-day and depressed 5-day behaviors and molecular effects.
Collapse
Affiliation(s)
- C M Ebrahimi
- Brain Research Centre, Graduate Program in Neuroscience and Department of Psychology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
31
|
Eastwood SL, Salih T, Harrison PJ. Differential expression of calcineurin A subunit mRNA isoforms during rat hippocampal and cerebellar development. Eur J Neurosci 2006; 22:3017-24. [PMID: 16367768 DOI: 10.1111/j.1460-9568.2005.04518.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcineurin (protein phosphatase 2B) is a calcium-dependent serine-threonine phosphatase. It has diverse roles and is centrally involved in synaptic plasticity. The catalytic A subunit of calcineurin has three isoforms, alpha, beta and gamma. Their expression and ontogeny in the brain has not been systematically investigated; such data become important with a report that PPP3CC, the gene encoding calcineurin Agamma, is a susceptibility gene for schizophrenia, and the finding that its expression is decreased in the disorder. We used in situ hybridization histochemistry to measure the relative transcript abundance of calcineurin Agamma and the other catalytic isoforms, Aalpha and Abeta, during development of the Sprague-Dawley rat hippocampus and cerebellum. All three isoforms are present in both regions at all time points [embryonic day 19 (E19) to postnatal day 42 (P42)] and undergo developmental regulation, but differ in their ontogenic profile. Calcineurin Aalpha and Abeta mRNAs increased from E19 through to adulthood, whereas Agamma mRNA was most highly expressed during early developmental stages. Calcineurin Aalpha and Abeta mRNAs positively correlated with synaptophysin mRNA (a synaptic marker), whilst Agamma mRNA was either unrelated to, or negatively correlated, with this transcript. These data confirm that all three calcineurin A subunits are expressed in the rodent brain, and indicate that calcineurin Agamma may have different roles than Aalpha and Abeta. The data also suggest a potential importance of calcineurin Agamma in neurodevelopment, and in the genetically influenced neurodevelopmental disturbance that is thought to underlie schizophrenia.
Collapse
Affiliation(s)
- Sharon L Eastwood
- University of Oxford, Department of Psychiatry, Neurosciences Building, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | |
Collapse
|