1
|
Goto J, Nishida R, Terayama S, Mori T. Evaluation of a simple activity measurement method in rats. J Phys Ther Sci 2023; 35:633-637. [PMID: 37670761 PMCID: PMC10475646 DOI: 10.1589/jpts.35.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/09/2023] [Indexed: 09/07/2023] Open
Abstract
[Purpose] Behavioral analysis is widely used in animal research. However, such analysis requires specialized equipment and can be difficult to perform. Therefore, this study aimed to explore and validate a simple behavioral analysis method. [Participants and Methods] For behavioral assessments, Wistar rats were placed in a rearing cage and videotaped from two directions: overhead and side view. The filmed videos were analyzed using ImageJ software to calculate the distance traveled and activity and inactivity times of the rats. Intraclass correlation coefficients 1 and 2 were calculated to examine the reliability of the behavioral analysis method. [Results] Intraclass correlation coefficients 1 and 2 for distance traveled and activity and inactivity times determined using the behavioral analysis method showed high reliability. [Conclusion] The behavioral analysis method validated in this study used inexpensive and easily accessible equipment and devices. The results show high correlation coefficients for the measurement of distance traveled and activity time performed by experimental animals, demonstrating the reliability of this simple method.
Collapse
Affiliation(s)
- Jun Goto
- Graduate School of Health Science, Kio University,
Japan
- Department of Anatomy and Neuroscience, Graduate School of
Medicine, Osaka Metropolitan University: 1-4-3 Asahi-machi, Abeno-ku, Osaka-shi, Osaka
545-8585, Japan
| | - Ryoichi Nishida
- Graduate School of Health Science, Kio University,
Japan
- Department of Molecular Pathology, Graduate School of
Medicine, Nara Medical University, Japan
| | - Shogo Terayama
- Graduate School of Health Science, Kio University,
Japan
| | - Takuya Mori
- Department of Molecular Pathology, Graduate School of
Medicine, Nara Medical University, Japan
- Department of Ethics Support, Kyoto University Hospital,
Japan
| |
Collapse
|
2
|
Schepanski S, Chini M, Sternemann V, Urbschat C, Thiele K, Sun T, Zhao Y, Poburski M, Woestemeier A, Thieme MT, Zazara DE, Alawi M, Fischer N, Heeren J, Vladimirov N, Woehler A, Puelles VG, Bonn S, Gagliani N, Hanganu-Opatz IL, Arck PC. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat Commun 2022; 13:4571. [PMID: 35931682 PMCID: PMC9356013 DOI: 10.1038/s41467-022-32230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.
Collapse
Affiliation(s)
- Steven Schepanski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Sternemann
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Poburski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Theres Thieme
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Vladimirov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Victor G Puelles
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
4
|
Moreno H, de Brugada I. Prenatal dietary choline supplementation modulates long-term memory development in rat offspring. Nutr Neurosci 2021; 24:417-425. [PMID: 31304891 DOI: 10.1080/1028415x.2019.1641294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Previous studies on preclinical models have shown that giving supplemental choline during the embryonic period improves performance on memory tasks during adulthood. However, the effects of an early intervention on the development of cognitive functions in the immature brain have not been widely studied. In addition, it has been well established that short-term memory in rats emerges at an earlier stage than long-term memory.Objective: The aim of this work was to examine the effect of prenatal dietary choline supplementation on long-term memory development in rats.Methods: In order to assess long-term memory, we used an object-recognition task, which evaluates the ability to recall a previously presented stimulus. Pregnant rats were fed with the diets AIN 76-A standard (1.1 g choline/Kg food) or supplemented (5 g choline/Kg food) between embryonic days (E) 12 and E18. On the first post-natal day (PN 0), male offspring of the rats fed with the supplemented and standard diet were cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of PN21-22 or PN29-31 applying 24-hour retention tests.Results: The supplemented animals spent less time exploring the familiar object after a 24-hour retention interval, an effect that was observed in both the group tested at PN21-22 days of age and that tested at PN29-31 days. The non-supplemented rats only showed this effect in the group tested at PN29-31 days.Conclusions: These results suggest that prenatal supplementation with choline accelerates the development of long-term memory in rats.
Collapse
Affiliation(s)
- Hayarelis Moreno
- Department of Psychology of Education and Psychobiology, International University of La Rioja, La Rioja, Spain
| | - Isabel de Brugada
- Department of Experimental Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
5
|
Xu X, Song L, Hanganu-Opatz IL. Knock-Down of Hippocampal DISC1 in Immune-Challenged Mice Impairs the Prefrontal-Hippocampal Coupling and the Cognitive Performance Throughout Development. Cereb Cortex 2021; 31:1240-1258. [PMID: 33037815 PMCID: PMC7786359 DOI: 10.1093/cercor/bhaa291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal–hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Ontogeny of spontaneous recognition memory in rodents. Neurobiol Learn Mem 2020; 177:107361. [PMID: 33307181 DOI: 10.1016/j.nlm.2020.107361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Spontaneous recognition memory tasks explore thewhat,whereandwhencomponents of recognition memory. These tasks are widely used in rodents to assess cognitive function across the lifespan. While several neurodevelopmental and mental disorders present symptom onset in early life, very little is known about how memories are expressed in early life, and as a consequence how they may be affected in pathological conditions. In this review, we conduct an analysis of the studies examining the expression of spontaneous recognition memory in young rodents. We compiled studies using four different tasks: novel object recognition, object location, temporal order recognition and object place. First, we identify major sources of variability between early life spontaneous recognition studies and classify them for later comparison. Second, we use these classifications to explore the current knowledge on the ontogeny of each of these four spontaneous recognition memory tasks. We conclude by discussing the possible implications of the relative time of onset for each of these tasks and their respective neural correlates. In compiling this research, we hope to advance on establishing a developmental timeline for the emergence of distinct components of recognition memory, while also identifying key areas of focus for future research. Establishing the ontogenetic profile of rodent spontaneous recognition memory tasks will create a necessary blueprint for cognitive assessment in animal models of neurodevelopmental and mental disorders, a first step towards improved and earlier diagnosis as well as novel intervention strategies.
Collapse
|
7
|
Kwan LY, Eaton DL, Andersen SL, Dow-Edwards D, Levin ED, Talpos J, Vorhees CV, Li AA. This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 2020; 81:106916. [DOI: 10.1016/j.ntt.2020.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
|
8
|
Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci Rep 2020; 10:10612. [PMID: 32606443 PMCID: PMC7326931 DOI: 10.1038/s41598-020-67619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Spontaneous recognition memory tasks build on an animal’s natural preference for novelty to assess the what, where and when components of episodic memory. Their simplicity, ethological relevance and cross-species adaptability make them extremely useful to study the physiology and pathology of memory. Recognition memory deficits are common in rodent models of neurodevelopmental disorders, and yet very little is known about the expression of spontaneous recognition memory in young rodents. This is exacerbated by the paucity of data on the developmental onset of recognition memory in mice, a major animal model of disease. To address this, we characterized the ontogeny of three types of spontaneous recognition memory in mice: object location, novel object recognition and temporal order recognition. We found that object location is the first to emerge, at postnatal day (P)21. This was followed by novel object recognition (24 h delay), at P25. Temporal order recognition was the last to emerge, at P28. Elucidating the developmental expression of recognition memory in mice is critical to improving our understanding of the ontogeny of episodic memory, and establishes a necessary blueprint to apply these tasks to probe cognitive deficits at clinically relevant time points in animal models of developmental disorders.
Collapse
|
9
|
Moreton E, Baron P, Tiplady S, McCall S, Clifford B, Langley-Evans S, Fone K, Voigt J. Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res 2019; 363:191-198. [DOI: 10.1016/j.bbr.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
10
|
Transient Knock-Down of Prefrontal DISC1 in Immune-Challenged Mice Causes Abnormal Long-Range Coupling and Cognitive Dysfunction throughout Development. J Neurosci 2019; 39:1222-1235. [PMID: 30617212 PMCID: PMC6381232 DOI: 10.1523/jneurosci.2170-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Compromised brain development has been hypothesized to account for mental illness. This concept was underpinned by the function of the molecule disrupted-in-schizophrenia 1 (DISC1), which represents an intracellular hub of developmental processes and has been related to cognitive dysfunction in psychiatric disorders. Mice with whole-brain DISC1 knock-down show impaired prefrontal–hippocampal function and cognitive abilities throughout development and at adulthood, especially when combined with early environmental stressors, such as maternal immune activation (MIA). However, the contribution of abnormal DISC1-driven maturation of either prefrontal cortex (PFC) or hippocampus (HP) to these deficits is still unknown. Here, we use in utero electroporation to restrict the DISC1 knock-down to prefrontal layer II/III pyramidal neurons during perinatal development and expose these mice to MIA as an environmental stressor (dual-hit GPFCE mice, both sexes). Combining in vivo electrophysiology and neuroanatomy with behavioral testing, we show that GPFCE mice at neonatal age have abnormal patterns of oscillatory activity and firing in PFC, but not HP. Abnormal firing rates in PFC of GPFCE mice relate to sparser dendritic arborization and lower spine density. Moreover, the long-range coupling within prefrontal–hippocampal networks is decreased at this age. The transient prefrontal DISC1 knock-down was sufficient to permanently perturb the prefrontal–hippocampal communication and caused poorer recognition memory performance at pre-juvenile age. Thus, developmental dysfunction of prefrontal circuitry causes long-lasting disturbances related to mental illness. SIGNIFICANCE STATEMENT Hypofrontality is considered a main cause of cognitive deficits in mental disorders, yet the underlying mechanisms are still largely unknown. During development, long before the emergence of disease symptoms, the functional coupling within the prefrontal–hippocampal network, which is the core brain circuit involved in cognitive processing, is reduced. To assess to which extent impaired prefrontal development contributes to the early dysfunction, immune-challenged mice with transient DISC1 knock-down confined to PFC were investigated in their prefrontal–hippocampal communication throughout development by in vivo electrophysiology and behavioral testing. We show that perturbing developmental processes of prefrontal layer II/III pyramidal neurons is sufficient to diminish prefrontal–hippocampal coupling and decrease the cognitive performance throughout development.
Collapse
|
11
|
Jordan CJ, Andersen SL. Working memory and salivary brain-derived neurotrophic factor as developmental predictors of cocaine seeking in male and female rats. Addict Biol 2018; 23:868-879. [PMID: 28857460 DOI: 10.1111/adb.12535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/02/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Poor working memory is linked to future risk-taking behaviors. Lifelong risk of habitual drug use is highest in individuals who initiate use in early adolescence. We sought to determine in rats whether juvenile traits, specifically poor working memory and low salivary brain-derived neurotrophic factor (BDNF), are related to elevated cocaine taking and relapse in adolescence and adulthood. On postnatal day (P) 20, working memory was assessed using the novel object recognition task in male and female rats. Saliva was assayed at P20 for BDNF before cocaine self-administration on P28 [0.75 or 0.25 mg/kg/infusion for 30 days under a fixed-ratio (FR) 1 to FR5 schedule] and on P94 before relapse after 30-day abstinence in adulthood. A separate cohort of P28 male rats was assayed for object discrimination and BDNF in saliva and the medial prefrontal cortex and dorsolateral striatum. Novel object discrimination correlated positively with salivary BDNF on P20 and dorsolateral striatum levels, but negatively with medial prefrontal cortex BDNF in male rats. In female rats, P20 salivary BDNF negatively correlated with object discrimination. Salivary BDNF positively correlated across age in male rats. Male rats earned more cocaine (0.75 mg/kg) at FR5 and responded more at relapse than did female rats. These elevated relapse rates in male rats were significantly associated with P20 object discrimination and salivary BDNF. Relapse after 0.75 and 0.25 mg/kg in female rats correlated only with object discrimination. In conclusion, poor working memory and low salivary BDNF in juvenile male rats may represent biomarkers for later cocaine use. Further research is needed to identify biomarkers for risk in male rats.
Collapse
Affiliation(s)
- Chloe J. Jordan
- Department of Psychiatry; McLean Hospital, Harvard Medical School; Belmont MA USA
| | - Susan L. Andersen
- Department of Psychiatry; McLean Hospital, Harvard Medical School; Belmont MA USA
| |
Collapse
|
12
|
Hartung H, Cichon N, De Feo V, Riemann S, Schildt S, Lindemann C, Mulert C, Gogos JA, Hanganu-Opatz IL. From Shortage to Surge: A Developmental Switch in Hippocampal-Prefrontal Coupling in a Gene-Environment Model of Neuropsychiatric Disorders. Cereb Cortex 2018; 26:4265-4281. [PMID: 27613435 PMCID: PMC5066837 DOI: 10.1093/cercor/bhw274] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Cognitive deficits represent a major burden of neuropsychiatric disorders and result in part from abnormal communication within hippocampal–prefrontal circuits. While it has been hypothesized that this network dysfunction arises during development, long before the first clinical symptoms, experimental evidence is still missing. Here, we show that pre-juvenile mice mimicking genetic and environmental risk factors of disease (dual-hit GE mice) have poorer recognition memory that correlates with augmented coupling by synchrony and stronger directed interactions between prefrontal cortex and hippocampus. The network dysfunction emerges already during neonatal development, yet it initially consists in a diminished hippocampal theta drive and consequently, a weaker and disorganized entrainment of local prefrontal circuits in discontinuous oscillatory activity in dual-hit GE mice when compared with controls. Thus, impaired maturation of functional communication within hippocampal–prefrontal networks switching from hypo- to hyper-coupling may represent a mechanism underlying the pathophysiology of cognitive deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Henrike Hartung
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Laboratory of Neurobiology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Nicole Cichon
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vito De Feo
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Stephanie Riemann
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Current address: German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Sandra Schildt
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Lindemann
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Joseph A Gogos
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.,Department of Physiology, Columbia University, New York, NY 10032, USA
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
13
|
Gallant S, Welch L, Martone P, Shalev U. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring. Behav Brain Res 2017; 328:62-69. [DOI: 10.1016/j.bbr.2017.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
14
|
Early-life stress impairs recognition memory and perturbs the functional maturation of prefrontal-hippocampal-perirhinal networks. Sci Rep 2017; 7:42042. [PMID: 28169319 PMCID: PMC5294456 DOI: 10.1038/srep42042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Early life exposure to stressful situations impairs cognitive performance of adults and contributes to the etiology of several psychiatric disorders. Most of affected cognitive abilities rely on coupling by synchrony within complex neuronal networks, including prefrontal cortex (PFC), hippocampus (HP), and perirhinal cortex (PRH). Yet it remains poorly understood how early life stress (ELS) induces dysfunction within these networks during the course of development. Here we used intermittent maternal separation during the first 2 postnatal weeks to mimic ELS and monitored the recognition memory and functional coupling within prefrontal-hippocampal-perirhinal circuits in juvenile rats. While maternally-separated female rats showed largely normal behavior, male rats experiencing this form of ELS had poorer location and recency recognition memory. Simultaneous multi-site extracellular recordings of network oscillations and neuronal spiking from PFC, HP, and PRH in vivo revealed corresponding decrease of oscillatory activity in theta and beta frequency bands in the PFC of male but not female rats experiencing maternal separation. This deficit was accompanied by weaker cross-frequency coupling within juvenile prefrontal-hippocampal networks. These results indicate that already at juvenile age ELS mimicked by maternal separation induces sex-specific deficits in recognition memory that might have as underlying mechanism a disturbed communication between PFC and HP.
Collapse
|
15
|
Speight A, Davey WG, McKenna E, Voigt JW. Exposure to a maternal cafeteria diet changes open‐field behaviour in the developing offspring. Int J Dev Neurosci 2016; 57:34-40. [DOI: 10.1016/j.ijdevneu.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- Abigail Speight
- School of Veterinary Medicine and Science, University of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| | - William G. Davey
- School of Veterinary Medicine and Science, University of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| | - Emily McKenna
- School of Veterinary Medicine and Science, University of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| | - Jörg‐Peter W. Voigt
- School of Veterinary Medicine and Science, University of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| |
Collapse
|
16
|
Goepfrich AA, Friemel CM, Pauen S, Schneider M. Ontogeny of sensorimotor gating and short-term memory processing throughout the adolescent period in rats. Dev Cogn Neurosci 2016; 25:167-175. [PMID: 27908562 PMCID: PMC6987840 DOI: 10.1016/j.dcn.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing.
Collapse
Affiliation(s)
- Anja A Goepfrich
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chris M Friemel
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabina Pauen
- Department of Psychology, University of Heidelberg, Germany
| | | |
Collapse
|
17
|
Wang Y, Chen M, Zhang Y, Huo T, Fang Y, Jiao X, Yuan M, Jiang H. Effects of realgar on GSH synthesis in the mouse hippocampus: Involvement of system XAG(-), system XC(-), MRP-1 and Nrf2. Toxicol Appl Pharmacol 2016; 308:91-101. [PMID: 27412851 DOI: 10.1016/j.taap.2016.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
Abstract
Realgar is a type of mineral drug that contains arsenic and has neurotoxicity. Glutathione (GSH), which is the main antioxidant in the central nervous system, plays a key role in antioxidant defenses and the detoxification of arsenic. However, whether realgar interferes with the synthesis of GSH in the brain and the molecular mechanisms underlying its effects are largely unknown. Here, we used mouse models of exposure to realgar to show that realgar affects the synthesis of GSH in the hippocampus, leading to ultrastructural changes in hippocampal neurons and synapses and deficiencies in cognitive abilities, and that the mechanisms that cause this effect may be associated with alterations in the expression of system XAG(-), system XC(-), multidrug resistance-associated protein 1(MRP-1), nuclear factor E2-related factor 2 (Nrf2), γ-glutamylcysteine synthetase (γ-GCS), and the levels of glutamate (Glu) and cysteine (Cys) in the extracellular fluid. These findings provide a theoretical basis for preventing the drug-induced chronic arsenic poisoning in the nervous system that is triggered by realgar.
Collapse
Affiliation(s)
- Yanlei Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China; School of Basic Medical Sciences, North China University of Science and Technology, 46 Xinhua Road, Tangshan, Hebei 063009, People's Republic of China
| | - Mo Chen
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Yinghua Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Ying Fang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77 Shenning1 Road, Double D Port, Dalian, Liaoning 116600, People's Republic of China
| | - Xuexin Jiao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Mingmei Yuan
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China; School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
18
|
Wang YL, Chen M, Huo TG, Zhang YH, Fang Y, Feng C, Wang SY, Jiang H. Effects of Glycyrrhetinic Acid on GSH Synthesis Induced by Realgar in the Mouse Hippocampus: Involvement of System X AG - $$ {\mathbf{X}}_{{\mathbf{AG}}^{-}} $$ , System X C - $$ {\mathbf{X}}_{{\mathbf{C}}^{-}} $$ , MRP-1, and Nrf2. Mol Neurobiol 2016; 54:3102-3116. [DOI: 10.1007/s12035-016-9859-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
19
|
Domnick NK, Gretenkord S, De Feo V, Sedlacik J, Brockmann MD, Hanganu-Opatz IL. Neonatal hypoxia–ischemia impairs juvenile recognition memory by disrupting the maturation of prefrontal–hippocampal networks. Exp Neurol 2015; 273:202-14. [DOI: 10.1016/j.expneurol.2015.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 11/28/2022]
|
20
|
Huo TG, Li WK, Zhang YH, Yuan J, Gao LY, Yuan Y, Yang HL, Jiang H, Sun GF. Excitotoxicity Induced by Realgar in the Rat Hippocampus: the Involvement of Learning Memory Injury, Dysfunction of Glutamate Metabolism and NMDA Receptors. Mol Neurobiol 2014; 51:980-94. [PMID: 24865513 DOI: 10.1007/s12035-014-8753-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Realgar is a type of mineral drug containing arsenic. The nervous system toxicity of realgar has received extensive attention. However, the underlying mechanisms of realgar-induced neurotoxicity have not been clearly elucidated. To explore the mechanisms that contribute to realgar-induced neurotoxicity, weanling rats were exposed to realgar (0, 0.3, 0.9, 2.7 g/kg) for 6 weeks, and cognitive ability was tested using the Morris water maze (MWM) test and object recognition task (ORT). The levels of arsenic in the blood and hippocampus were monitored. The ultrastructures of hippocampal neurons were observed. The levels of glutamate (Glu) and glutamine (Gln) in the hippocampus and hippocampal CA1 region; the activities of glutamine synthetase (GS) and phosphate-activated glutaminase (PAG); the mRNA and protein expression of glutamate transporter 1 (GLT-1), glutamate/aspartate transporter (GLAST), and N-methyl-D-aspartate (NMDA) receptors; and the level of intracellular Ca(2+) were also investigated. The results indicate that the rats developed deficiencies in cognitive ability after a 6-week exposure to realgar. The arsenic contained in realgar and the arsenic metabolites passed through the blood-brain barrier (BBB) and accumulated in the hippocampus, which resulted in the excessive accumulation of Glu in the extracellular space. The excessive accumulation of Glu in the extracellular space induced excitotoxicity, which was shown by enhanced GS and PAG activities, inhibition of GLT-1 mRNA and protein expression, alterations in NMDA receptor mRNA and protein expression, disturbance of intracellular Ca(2+) homeostasis, and ultrastructural changes in hippocampal neurons. In conclusion, the findings from our study indicate that exposure to realgar induces excitotoxicity and that the mechanism by which this occurs may be associated with disturbances in Glu metabolism and transportation and alterations in NMDA receptor expression.
Collapse
Affiliation(s)
- Tao-guang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 92 of Bei Er Road, Shenyang, 110001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jablonski SA, Schreiber WB, Westbrook SR, Brennan LE, Stanton ME. Determinants of novel object and location recognition during development. Behav Brain Res 2013; 256:140-50. [PMID: 23933466 DOI: 10.1016/j.bbr.2013.07.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
In the novel object recognition (OR) paradigm, rats are placed in an arena where they encounter two sample objects during a familiarization phase. A few minutes later, they are returned to the same arena and are presented with a familiar object and a novel object. The object location recognition (OL) variant involves the same familiarization procedure but during testing one of the familiar objects is placed in a novel location. Normal adult rats are able to perform both the OR and OL tasks, as indicated by enhanced exploration of the novel vs. the familiar test item. Rats with hippocampal lesions perform the OR but not OL task indicating a role of spatial memory in OL. Recently, these tasks have been used to study the ontogeny of spatial memory but the literature has yielded conflicting results. The current experiments add to this literature by: (1) behaviorally characterizing these paradigms in postnatal day (PD) 21, 26 and 31-day-old rats; (2) examining the role of NMDA systems in OR vs. OL; and (3) investigating the effects of neonatal alcohol exposure on both tasks. Results indicate that normal-developing rats are able to perform OR and OL by PD21, with greater novelty exploration in the OR task at each age. Second, memory acquisition in the OL but not OR task requires NMDA receptor function in juvenile rats [corrected]. Lastly, neonatal alcohol exposure does not disrupt performance in either task. Implications for the ontogeny of incidental spatial learning and its disruption by developmental alcohol exposure are discussed.
Collapse
Affiliation(s)
- S A Jablonski
- Psychology Department, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
22
|
Shomrat T, Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. ACTA ACUST UNITED AC 2013; 216:3799-810. [PMID: 23821717 DOI: 10.1242/jeb.087809] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Planarian flatworms are a popular system for research into the molecular mechanisms that enable these complex organisms to regenerate their entire body, including the brain. Classical data suggest that they may also be capable of long-term memory. Thus, the planarian system may offer the unique opportunity to study brain regeneration and memory in the same animal. To establish a system for the investigation of the dynamics of memory in a regenerating brain, we developed a computerized training and testing paradigm that avoided the many issues that confounded previous, manual attempts to train planarians. We then used this new system to train flatworms in an environmental familiarization protocol. We show that worms exhibit environmental familiarization, and that this memory persists for at least 14 days - long enough for the brain to regenerate. We further show that trained, decapitated planarians exhibit evidence of memory retrieval in a savings paradigm after regenerating a new head. Our work establishes a foundation for objective, high-throughput assays in this molecularly tractable model system that will shed light on the fundamental interface between body patterning and stored memories. We propose planarians as key emerging model species for mechanistic investigations of the encoding of specific memories in biological tissues. Moreover, this system is lik ely to have important implications for the biomedicine of stem-cell-derived treatments of degenerative brain disorders in human adults.
Collapse
Affiliation(s)
- Tal Shomrat
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | |
Collapse
|