1
|
Perea-Rodriguez JP, de Jong TR, Kung E, Horrell ND, Saltzman W. Consequences of placentophagia by adult virgin male California mice (Peromyscus californicus). Behav Processes 2019; 166:103889. [DOI: 10.1016/j.beproc.2019.103889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
2
|
Behavioral and endocrine consequences of placentophagia in male California mice (Peromyscus californicus). Physiol Behav 2018; 188:283-290. [DOI: 10.1016/j.physbeh.2018.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
|
3
|
Horrell ND, Hickmott PW, Saltzman W. Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain. Curr Top Behav Neurosci 2018; 43:111-160. [PMID: 30206901 DOI: 10.1007/7854_2018_55] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Saltzman W, Harris BN, De Jong TR, Perea-Rodriguez JP, Horrell ND, Zhao M, Andrew JR. Paternal Care in Biparental Rodents: Intra- and Inter-individual Variation. Integr Comp Biol 2017; 57:589-602. [PMID: 28641377 PMCID: PMC5886332 DOI: 10.1093/icb/icx047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parental care by fathers, although rare among mmmals, can be essential for the survival and normal development of offspring in biparental species. A growing body of research on biparental rodents has identified several developmental and experiential influences on paternal responsiveness. Some of these factors, such as pubertal maturation, interactions with pups, and cues from a pregnant mate, contribute to pronounced changes in paternal responsiveness across the course of the lifetime in individual males. Others, particularly intrauterine position during gestation and parental care received during postnatal development, can have long-term effects on paternal behavior and contribute to stable differences among individuals within a species. Focusing on five well-studied, biparental rodent species, we review the developmental and experiential factors that have been shown to influence paternal responsiveness, and consider their roles in generating both intra- and inter-individual variation. We also review hormones and neuropeptides that have been shown to modulate paternal care and discuss their potential contributions to behavioral differences within and between males. Finally, we discuss the possibility that vasopressinergic and possibly oxytocinergic signaling within the brain, modulated by gonadal steroid hormones, may represent the "final common pathway" mediating effects of developmental and experiential variables on intra- and inter-individual variation in paternal care.
Collapse
Affiliation(s)
- Wendy Saltzman
- Department of Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, California, USA
| | - Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Trynke R. De Jong
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Germany
| | | | - Nathan D. Horrell
- Department of Biology, University of California, Riverside, California, USA
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Meng Zhao
- Department of Biology, University of California, Riverside, California, USA
- Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, California, USA
| | - Jacob R. Andrew
- Department of Biology, University of California, Riverside, California, USA
- Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, California, USA
| |
Collapse
|
5
|
Bester-Meredith JK, Burns JN, Conley MF, Mammarella GE, Ng ND. Peromyscus as a model system for understanding the regulation of maternal behavior. Semin Cell Dev Biol 2016; 61:99-106. [PMID: 27381343 DOI: 10.1016/j.semcdb.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
The genus Peromyscus has been used as a model system for understanding maternal behavior because of the diversity of reproductive strategies within this genus. This review will describe the ecological factors that determine litter size and litter quality in polygynous species such as Peromyscus leucopus and Peromyscus maniculatus. We will also outline the physiological and social factors regulating maternal care in Peromyscus californicus, a monogamous and biparental species. Because biparental care is relatively rare in mammals, most research in P. californicus has focused on understanding the biology of paternal care while less research has focused on understanding maternal care. As a result, the social, sensory, and hormonal cues used to coordinate parental care between male and female P. californicus have been relatively well-studied. However, less is known about the physiology of maternal care in P. californicus and in other Peromyscus species. The diversity of the genus Peromyscus provides the potential for future research to continue to examine how variation in social systems has shaped the mechanisms that underlie maternal care.
Collapse
Affiliation(s)
- Janet K Bester-Meredith
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA.
| | - Jennifer N Burns
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| | - Mariah F Conley
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| | - Grace E Mammarella
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| | - Nathaniel D Ng
- Seattle Pacific University, Department of Biology, 3307 3rd Ave West, Seattle, WA 98119, USA
| |
Collapse
|
6
|
Harding KM, Lonstein JS. Placentophagia in weanling female laboratory rats. Dev Psychobiol 2014; 56:1290-9. [PMID: 24604548 DOI: 10.1002/dev.21208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022]
Abstract
Placentophagia is common in parturient mammals and offers physiological and behavioral advantages for mothers. In natural environments, weanlings are often present during the birth of younger siblings, but it is unknown if weanling rats are placentophagic or prefer placenta over other substances. To examine this, primiparous rats were remated during the postpartum estrus and their weanling daughters remained in the natal nest during their mother's next parturition. Continuous observation revealed that 58% of weanlings were placentophagic. To determine if this placentophagia occurs away from parturient mothers, weanling females still living in their natal nest were offered placenta, liver, or cake frosting in a novel chamber. They ingested more placenta and liver than frosting. Thus, many weanling female laboratory rats are placentophagic during the birth of younger siblings but do not selectively prefer placenta when tested outside their natal nest. Consequences of placentophagia by weanling female rats are unknown, but it may promote their alloparenting or later postpartum mothering.
Collapse
Affiliation(s)
- Kaitlyn M Harding
- Department of Psychology, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824
| | | |
Collapse
|