1
|
Bian X, Yang W, Lin J, Jiang B, Shao X. Hypothalamic-Pituitary-Adrenal Axis and Epilepsy. J Clin Neurol 2024; 20:131-139. [PMID: 38330420 PMCID: PMC10921057 DOI: 10.3988/jcn.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024] Open
Abstract
Epilepsy is a recurrent, transient seizure disorder of the nervous system that affects the intellectual development, life and work, and psychological health of patients. People with epilepsy worldwide experience great suffering. Stressful stimuli such as infection, mental stress, and sleep deprivation are important triggers of epilepsy, and chronic stressful stimuli can lead to frequent seizures and comorbidities. The hypothalamic-pituitary-adrenal (HPA) axis is the most important system involved in the body's stress response, and dysfunction thereof is thought to be associated with core epilepsy symptoms and related psychopathology. This article explores the intrinsic relationships of corticotropin-releasing hormone, adrenocorticotropic hormone, and glucocorticoids with epilepsy in order to reveal the role of the HPA axis in the pathogenesis of epilepsy. We hope that this information will yield future possible directions and ideas for fully understanding the pathogenesis of epilepsy and developing antiepileptic drugs.
Collapse
Affiliation(s)
- Xueying Bian
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Wenxian Yang
- Department of Pediatrics, Yiwu Central Hospital, Yiwu, China
| | - Jiannan Lin
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Biao Jiang
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaoli Shao
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
2
|
Korgan AC, Foxx CL, Hashmi H, Sago SA, Stamper CE, Heinze JD, O'Leary E, King JL, Perrot TS, Lowry CA, Weaver ICG. Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Sci Rep 2022; 12:10179. [PMID: 35715467 PMCID: PMC9205913 DOI: 10.1038/s41598-022-14095-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Christine L Foxx
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, TN, 37830, USA
- U.S. Department of Agriculture (USDA), National Animal Health Laboratory Network (NAHLN), Animal and Plant Health Inspection Service (APHIS), Ames, IA, 50010, USA
| | - Heraa Hashmi
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Saydie A Sago
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Rocky Mountain MIRECC for Veteran Suicide Prevention, 1700 N Wheeling St, G-3-116M, Aurora, CO, 80045, USA
| | - Jared D Heinze
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
3
|
Korgan AC, O'Leary E, King JL, Weaver ICG, Perrot TS. Effects of paternal high-fat diet and rearing environment on maternal investment and development of defensive responses in the offspring. Psychoneuroendocrinology 2018. [PMID: 29518693 DOI: 10.1016/j.psyneuen.2018.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Paternal preconception risk factors (e.g. stress, diet, drug use) correlate with metabolic dysfunction in offspring, which is often comorbid with depressive and anxiety-like phenotypes. Detection of these risk factors or deleterious phenotypes informs a female about prevailing ecological demands, in addition to potential adverse environment-induced phenotypes that may be disseminated to her offspring. We examined whether a F0 male rat's prior exposure to an obesogenic high-fat diet (HFD) influences a female's attraction towards a male, subsequent mother-infant interactions and the development of defensive (emotional) responses in the F1 offspring. Females displayed less interest in the HFD exposed F0 males relative to control diet-exposed F0 males. Dams that reared F1 offspring in larger, semi-naturalistic housing provided more licking and grooming and active arched-back-nursing behavior. However, some of these effects interacted with paternal experience. F0 HFD and maternal rearing environment revealed sex-dependent, between group differences in F1 offspring wean weight, juvenile social interactions and anxiety-like behavior in adolescence. Our results show for the first time in mammals that male exposure to HFD may contribute to stable behavioral variation among females in courtship, maternal care, even when the females are not directly exposed to a HFD, and anxiety-like behavior in F1 offspring. Furthermore, when offspring were exposed to a predatory threat, hypothalamic Crf gene regulation was influenced by early housing. These results, together with our previous findings, suggest that paternal experience and maternal rearing conditions can influence maternal behavior and development of defensive responses of offspring.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada.
| |
Collapse
|
4
|
Green A, Esser MJ, Perrot TS. Developmental expression of anxiety and depressive behaviours after prenatal predator exposure and early life homecage enhancement. Behav Brain Res 2017; 346:122-136. [PMID: 29183765 DOI: 10.1016/j.bbr.2017.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023]
Abstract
Stressful events during gestation can have sex-specific effects on brain and behaviour, and may contribute to some of the differences observed in adult stress responding and psychopathology. We investigated the impact of a novel repeated prenatal psychological stress (prenatal predator exposure - PPS) during the last week of gestation in rats on offspring behaviours related to social interaction (play behaviour), open field test (OFT), forced swim test (FST) and sucrose preference test (SP) during the juvenile period and in adulthood. We further examined the role of postnatal environmental, using an enhanced housing condition (EHC), to prevent/rescue any changes. Some effects on anxiety, anhedonia, and stress-related coping behaviours (e.g., OFT, SP and OFT) did not emerge until adulthood. PPS increased OFT anxiety behaviours in adult males, and some OFT and SP behaviours in adult females. Contrary to this, EHC had few independent effects; most were apparent only when combined with PPS. In keeping with age-group differences, juvenile behaviours did not necessarily predict the same adult behaviours although juvenile OFT rearing and freezing, and juvenile FST immobility did predict adult FST immobility and sucrose preference, suggesting that some aspects of depressive behaviours may emerge early and predict adult vulnerability or coping behaviours. Together, these results suggest an important, though complex, role for early life psychological stressors and early life behaviours in creating an adult vulnerability to anxiety or depressive disorders and that environmental factors further modulate the effects of the prenatal stressors.
Collapse
Affiliation(s)
- Amanda Green
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017; 11:41. [PMID: 28360846 PMCID: PMC5350110 DOI: 10.3389/fnbeh.2017.00041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral (e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation and the role of DNA repair machinery. From parental history (e.g., drugs, housing, illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota, antibodies and stimulation, the nature of nurture provides not only mechanistic insight into how experiences propagate from external to internal variables, but also identifies a composite therapeutic target, chromatin modeling, for gestational/prenatal stress, adolescent anxiety/depression and adult-onset neuropsychiatric disease.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Austin C Korgan
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Kristen Lee
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Ryan V Wheeler
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
6
|
Korgan AC, O’Leary E, Bauer J, Fortier A, Weaver ICG, Perrot TS. Effects of Paternal Predation Risk and Rearing Environment on Maternal Investment and Development of Defensive Responses in the Offspring. eNeuro 2016; 3:ENEURO.0231-16.2016. [PMID: 27896313 PMCID: PMC5112542 DOI: 10.1523/eneuro.0231-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother-infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring.
Collapse
Affiliation(s)
- Austin C. Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Elizabeth O’Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jessica Bauer
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Aidan Fortier
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Ian C. G. Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Brain Repair Centre, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Tara S. Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Brain Repair Centre, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|