1
|
Robinson KG, Marsh AG, Lee SK, Hicks J, Romero B, Batish M, Crowgey EL, Shrader MW, Akins RE. DNA Methylation Analysis Reveals Distinct Patterns in Satellite Cell-Derived Myogenic Progenitor Cells of Subjects with Spastic Cerebral Palsy. J Pers Med 2022; 12:jpm12121978. [PMID: 36556199 PMCID: PMC9780849 DOI: 10.3390/jpm12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Spastic type cerebral palsy (CP) is a complex neuromuscular disorder that involves altered skeletal muscle microanatomy and growth, but little is known about the mechanisms contributing to muscle pathophysiology and dysfunction. Traditional genomic approaches have provided limited insight regarding disease onset and severity, but recent epigenomic studies indicate that DNA methylation patterns can be altered in CP. Here, we examined whether a diagnosis of spastic CP is associated with intrinsic DNA methylation differences in myoblasts and myotubes derived from muscle resident stem cell populations (satellite cells; SCs). Twelve subjects were enrolled (6 CP; 6 control) with informed consent/assent. Skeletal muscle biopsies were obtained during orthopedic surgeries, and SCs were isolated and cultured to establish patient-specific myoblast cell lines capable of proliferation and differentiation in culture. DNA methylation analyses indicated significant differences at 525 individual CpG sites in proliferating SC-derived myoblasts (MB) and 1774 CpG sites in differentiating SC-derived myotubes (MT). Of these, 79 CpG sites were common in both culture types. The distribution of differentially methylated 1 Mbp chromosomal segments indicated distinct regional hypo- and hyper-methylation patterns, and significant enrichment of differentially methylated sites on chromosomes 12, 13, 14, 15, 18, and 20. Average methylation load across 2000 bp regions flanking transcriptional start sites was significantly different in 3 genes in MBs, and 10 genes in MTs. SC derived MBs isolated from study participants with spastic CP exhibited fundamental differences in DNA methylation compared to controls at multiple levels of organization that may reveal new targets for studies of mechanisms contributing to muscle dysregulation in spastic CP.
Collapse
Affiliation(s)
- Karyn G. Robinson
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Adam G. Marsh
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Stephanie K. Lee
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - Jonathan Hicks
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Brigette Romero
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin L. Crowgey
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
| | - M. Wade Shrader
- Department of Orthopedics, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA
| | - Robert E. Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA
- Correspondence: ; Tel.: +1-302-651-6779
| |
Collapse
|
2
|
Gee DG. Early Adversity and Development: Parsing Heterogeneity and Identifying Pathways of Risk and Resilience. Am J Psychiatry 2021; 178:998-1013. [PMID: 34734741 DOI: 10.1176/appi.ajp.2021.21090944] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adversity early in life is common and is a major risk factor for the onset of psychopathology. Delineating the neurodevelopmental pathways by which early adversity affects mental health is critical for early risk identification and targeted treatment approaches. A rapidly growing cross-species literature has facilitated advances in identifying the mechanisms linking adversity with psychopathology, specific dimensions of adversity and timing-related factors that differentially relate to outcomes, and protective factors that buffer against the effects of adversity. Yet, vast complexity and heterogeneity in early environments and neurodevelopmental trajectories contribute to the challenges of understanding risk and resilience in the context of early adversity. In this overview, the author highlights progress in four major areas-mechanisms, heterogeneity, developmental timing, and protective factors; synthesizes key challenges; and provides recommendations for future research that can facilitate progress in the field. Translation across species and ongoing refinement of conceptual models have strong potential to inform prevention and intervention strategies that can reduce the immense burden of psychopathology associated with early adversity.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
3
|
Epigenetic Modifications Associated with Maternal Anxiety during Pregnancy and Children's Behavioral Measures. Cells 2021; 10:cells10092421. [PMID: 34572069 PMCID: PMC8469633 DOI: 10.3390/cells10092421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes are associated with altered behavior and neuropsychiatric disorders and they modify the trajectory of aging. Maternal anxiety during pregnancy is a common environmental challenge for the fetus, causing changes in DNA methylation. Here, we determined the mediating role of DNA methylation and the moderating role of offspring sex on the association between maternal anxiety and children's behavioral measures. In 83 mother-child dyads, maternal anxiety was assessed in each trimester of pregnancy when the child was four years of age. Children's behavioral measures and children's buccal DNA methylation levels (NR3C1, IGF2/H19 ICR, and LINE1) were examined. Higher maternal anxiety during the third trimester was associated with more methylation levels of the NR3C1. Moderating effects of sex on the association between maternal anxiety and methylation were found for IGF2/H19 and LINE1 CpGs. Mediation analysis showed that methylation of NR3C1 could buffer the effects of maternal anxiety on children's behavioral measures, but this effect did not remain significant after controlling for covariates. In conclusion, our data support an association between maternal anxiety during pregnancy and DNA methylation. The results also underscore the importance of sex differences and timing effects. However, DNA methylation as underlying mechanism of the effect of maternal anxiety during pregnancy on offspring's behavioral measures was not supported.
Collapse
|
4
|
The Impact of Stress Within and Across Generations: Neuroscientific and Epigenetic Considerations. Harv Rev Psychiatry 2021; 29:303-317. [PMID: 34049337 DOI: 10.1097/hrp.0000000000000300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of stress and trauma on biological systems in humans can be substantial. They can result in epigenetic changes, accelerated brain development and sexual maturation, and predisposition to psychopathology. Such modifications may be accompanied by behavioral, emotional, and cognitive overtones during one's lifetime. Exposure during sensitive periods of neural development may lead to long-lasting effects that may not be affected by subsequent environmental interventions. The cumulative effects of life stressors in an individual may affect offspring's methylome makeup and epigenetic clocks, neurohormonal modulation and stress reactivity, and physiological and reproductive development. While offspring may suffer deleterious effects from parental stress and their own early-life adversity, these factors may also confer traits that prove beneficial and enhance fitness to their own environment. This article synthesizes the data on how stress shapes biological and behavioral dimensions, drawing from preclinical and human models. Advances in this field of knowledge should potentially allow for an improved understanding of how interventions may be increasingly tailored according to individual biomarkers and developmental history.
Collapse
|
5
|
Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: A systematic review. Neurosci Biobehav Rev 2020; 112:392-409. [PMID: 32081689 DOI: 10.1016/j.neubiorev.2020.02.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation (DNAm) - an epigenetic process that regulates gene expression - may represent a mechanism for the biological embedding of early traumatic experiences, including childhood maltreatment. Here, we conducted the first systematic review of human studies linking childhood maltreatment to DNAm. In total, 72 studies were included in the review (2008-2018). The majority of extant studies (i) were based on retrospective data in adults, (ii) employed a candidate gene approach (iii) focused on global maltreatment, (iv) were based on easily accessible peripheral tissues, typically blood; and (v) were cross-sectional. Two-thirds of studies (n = 48) also examined maltreatment-related outcomes, such as stress reactivity and psychiatric symptoms. While findings generally support an association between childhood maltreatment and altered patterns of DNAm, factors such as the lack of longitudinal data, low comparability across studies as well as potential genetic and 'pre-exposure' environmental confounding currently limit the conclusions that can be drawn. Key challenges are discussed and concrete recommendations for future research are provided to move the field forward.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Yuning Zhang
- Centre for Innovation in Mental Health, University of Southampton; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tobias Nolte
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Anna Freud National Centre for Children and Families, London, United Kingdom
| |
Collapse
|
6
|
Liu N, Wang Y, An AY, Banker C, Qian YH, O'Donnell JM. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur J Neurosci 2019; 52:2694-2704. [PMID: 31471985 DOI: 10.1111/ejn.14565] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Single-housed stress elicits a range of social isolation-related behavioral and neurobiological abnormalities. To investigate single housing-induced behavioral changes and sex differences on stress outcomes, we examined single-housed stress-induced learning and memory impairment, depression-like behaviors, neuroplasticity abnormalities and underlying mechanism. The results showed that male and female mice socially isolated for 8 weeks had significantly decreased memory acquisition, as demonstrated in the learning curve of the Morris water maze task. Memory consolidation and retrieval were also decreased in both the single-housed male and female mice. These findings were corroborated further by the two classical animal models, Y-maze and novel object recognition tests, as demonstrated by reduced spontaneous alternation and recognition index in both sexes of single-housed mice. Subsequent studies suggested that single-housed male mice exhibited increased immobility time in both the forced swim and tail suspension tests, while the female mice only exhibited increased immobility time in the tail suspension test. Moreover, single-housed stress significantly decreased the apical and basal branch points, dendritic length, and spine density in the CA1 of hippocampal neurons in both male and female mice. These effects were consistent with decreased neuroplasticity and neuroprotective-related molecules such as synaptophysin, PSD95, PKA, pCREB and BDNF expression. These findings suggest that loss of neuronal remodeling and neuroprotective mechanisms due to single housing are involved in behavioral changes in both male and female mice. The results provide further evidence that neuroplasticity-related signaling plays a crucial role in isolation-induced effects on neuropsychiatric behavioral deficits in both sexes.
Collapse
Affiliation(s)
- Na Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China.,Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Yulu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aerin Y An
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Christopher Banker
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Marrocco J, Gray JD, Kogan JF, Einhorn NR, O’Cinneide EM, Rubin TG, Carroll TS, Schmidt EF, McEwen BS. Early Life Stress Restricts Translational Reactivity in CA3 Neurons Associated With Altered Stress Responses in Adulthood. Front Behav Neurosci 2019; 13:157. [PMID: 31354448 PMCID: PMC6637287 DOI: 10.3389/fnbeh.2019.00157] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Early life experiences program brain structure and function and contribute to behavioral endophenotypes in adulthood. Epigenetic control of gene expression by those experiences affect discrete brain regions involved in mood, cognitive function and regulation of hypothalamic-pituitary-adrenal (HPA) axis. In rodents, acute restraint stress increases the expression of the repressive histone H3 lysine 9 tri-methylation (H3K9me3) in hippocampal fields, including the CA3 pyramidal neurons. These CA3 neurons are crucially involved in cognitive function and mood regulation as well as activation of glucocorticoid (CORT) secretion. CA3 neurons also exhibit structural and functional changes after early-life stress (ELS) as well as after chronic stress in adulthood. Using a protocol of chronic ELS induced by limited bedding and nesting material followed by acute-swim stress (AS) in adulthood, we show that mice with a history of ELS display a blunted CORT response to AS, despite exhibiting activation of immediate early genes after stress similar to that found in control mice. We find that ELS induced persistently increased expression of the repressive H3K9me3 histone mark in the CA3 subfield at baseline that was subsequently decreased following AS. In contrast, AS induced a transient increase of this mark in control mice. Using translating ribosome affinity purification (TRAP) method to isolate CA3 translating mRNAs, we found that expression of genes of the epigenetic gene family, GABA/glutamate family, and glucocorticoid receptors binding genes were decreased transiently in control mice by AS and showed a persistent reduction in ELS mice. In most cases, AS in ELS mice did not induce gene expression changes. A stringent filtering of genes affected by AS in control and ELS mice revealed a noteworthy decrease in gene expression change in ELS mice compared to control. Only 18 genes were selectively regulated by AS in ELS mice and encompassed pathways such as circadian rhythm, inflammatory response, opioid receptors, and more genes included in the glucocorticoid receptor binding family. Thus, ELS programs a restricted translational response to stress in stress-sensitive CA3 neurons leading to persistent changes in gene expression, some of which mimic the transient effects of AS in control mice, while leaving in operation the immediate early gene response to AS.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Joshua F. Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Nathan R. Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Emma M. O’Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Todd G. Rubin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, United States
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
8
|
Junod A, Opendak M, LeDoux JE, Sullivan RM. Development of Threat Expression Following Infant Maltreatment: Infant and Adult Enhancement but Adolescent Attenuation. Front Behav Neurosci 2019; 13:130. [PMID: 31293397 PMCID: PMC6603125 DOI: 10.3389/fnbeh.2019.00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Early life maltreatment by the caregiver constitutes a major risk factor for the development of later-life psychopathologies, including fear-related pathologies. Here, we used an animal model of early life maltreatment induced by the Scarcity-Adversity Model of low bedding (LB) where the mother is given insufficient bedding for nest building while rat pups were postnatal days (PN) 8-12. To assess effects of maltreatment on the expression of threat-elicited defensive behaviors, animals underwent odor-shock threat conditioning at three developmental stages: late infancy (PN18), adolescence (PN45) or adulthood (>PN75) and tested the next day with odor only presentations (cue test). Results showed that in typically developing rats, the response to threat increases with maturation, although experience with maltreatment in early infancy produced enhanced responding to threat in infancy and adulthood, but a decrease in maltreated adolescents. To better understand the unique features of this decreased threat responding in adolescence, c-Fos expression was assessed within the amygdala and ventromedial prefrontal cortex (vmPFC) associated with the cued expression of threat learning. Fos counts across amygdala subregions were lower in LB rats compared to controls, while enhanced c-Fos expression was observed in the vmPFC prelimbic cortex (PL). Correlational analysis between freezing behavior and Fos revealed freezing levels were correlated with CeA in controls, although more global correlations were detected in LB-reared rats, including the BA, LA, and CeA. Functional connectivity analysis between brain regions showed that LB reared rats exhibited more diffuse interconnectivity across amygdala subnuclei, compared the more heterogeneous patterns observed in controls. In addition, functional connectivity between the IL and LA switched from positive to negative in abused adolescents. Overall, these results suggest that in adolescence, the unique developmental decrease in fear expression following trauma is associated with distinct changes in regional function and long-range connectivity, reminiscent of pathological brain function. These results suggest that early life maltreatment from the caregiver perturbs the developmental trajectory of threat-elicited behavior. Indeed, it is possible that this form of trauma, where the infant's safety signal or "safe haven" (the caregiver) is actually the source of the threat, produces distinct outcomes across development.
Collapse
Affiliation(s)
- Anouchka Junod
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Joseph E. LeDoux
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|