1
|
Graf A, Murray SH, Eltahir A, Patel S, Hansson AC, Spanagel R, McCormick CM. Acute and long-term sex-dependent effects of social instability stress on anxiety-like and social behaviours in Wistar rats. Behav Brain Res 2023; 438:114180. [PMID: 36349601 DOI: 10.1016/j.bbr.2022.114180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/02/2022]
Abstract
Adolescence is a critical time of social learning in which both the quantity and quality of social interactions shape adult behavior and social function. During adolescence, social instability such as disrupting or limiting social interactions can lead to negative life-long effects on mental health and well-being in humans. Animal models on social instability are critically important in understanding those underlying neurobiological mechanisms. However, studies in rats using these models have produced partly inconsistent results and can be difficult to generalize. Here we assessed in a sex and age consistent manner the long-term behavioural consequences of social instability stress (SIS - 1-hr daily isolation and change in cage mate between postnatal day (PD30-45)) in Wistar rats. Female and male rats underwent a battery of tests for anxiety-like, exploratory, and social behaviour over five days beginning either in adolescence (PD46) or in adulthood (PD70). Social instability led to reduced anxiety-like behaviour in the elevated plus maze in both sexes in adolescence and in adulthood. Social interactions were also reduced in rats that underwent SIS - an effect that was independent of sex and age when tested. SIS improved social recognition memory in both sexes whereas a sex-dependent effect was seen in the social novelty preference test where male rats that underwent SIS spent more time in social approach toward a novel peer than toward their cage mate. In comparison, control male and female groups did not differ in this test, in time spent with novel versus the cage mate. Thus, overall, social instability stress in Wistar rats altered the behavioural repertoire, with enduring alterations in social behaviour, enhanced exploratory behaviour, and reduced anxiety-like behaviour. In conclusion, the social instability stress paradigm may better be interpreted as a form of enrichment in Wistar rats than as a stressor.
Collapse
Affiliation(s)
- Akseli Graf
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shealin H Murray
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Akif Eltahir
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Smit Patel
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cheryl M McCormick
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada.
| |
Collapse
|
2
|
Within versus between group designs, and not timing of onset of puberty, influence sex and age differences in intake of palatable food in rats. Physiol Behav 2022; 257:113997. [DOI: 10.1016/j.physbeh.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
3
|
Corticotropin-releasing factor receptor 1 in infralimbic cortex modulates social stress-altered decision-making. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110523. [PMID: 35122897 DOI: 10.1016/j.pnpbp.2022.110523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022]
Abstract
Chronic stress could lead to a bias in behavioral strategies toward habits. However, it remains unclear which neuronal system modulates stress-induced behavioral abnormality during decision making. The corticotropin-releasing factor (CRF) system in the medial prefrontal cortex (mPFC), which has been implicated in governing strategy choice, is involved in the response to stress. The present study aimed to clarify whether altered function in cortical CRF receptors is linked to abnormal behaviors after chronic stress. In results, mice subjected to a 10-day social defeat preferred to use a habitual strategy. The infralimbic cortex (IL), but not the prelimbic cortex (PL) or anterior cingulate cortex (ACC), showed higher cFos expression in stress-subjected mice than in control mice, which may be associated with habitual behavior choice. Furthermore, CRF receptor 1 (CRFR1) agonist and antagonist infusion in IL during behavioral training mimicked and rescued stress-caused behavioral change in the decision-making assessment, respectively. An electrophysiological approach showed that the frequencies of both spontaneous IPSC and spontaneous EPSC, but not their amplitude, increased after stress and were modulated by CRFR1 agents. Further recordings revealed that an increased ratio of excitation to inhibition (E/I ratio) of IL by stress was rescued under conditions with CRFR1 antagonist. Collectively, these data indicate that CRFR1 plays a critical role in stress-permitted or enhanced glutamatergic and GABAergic presynaptic transmission in direct or indirect ways, as well as the modulation for E/I ratio in the IL. Thus, CRFR1 in the mPFC may be a proper target for treating cases of chronic stress-altered behavior.
Collapse
|
4
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
5
|
Koert A, Ploeger A, Bockting CL, Schmidt MV, Lucassen PJ, Schrantee A, Mul JD. The social instability stress paradigm in rat and mouse: A systematic review of protocols, limitations, and recommendations. Neurobiol Stress 2021; 15:100410. [PMID: 34926732 PMCID: PMC8648958 DOI: 10.1016/j.ynstr.2021.100410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Social stress is an important environmental risk factor for the development of psychiatric disorders, including depression and anxiety disorders. Social stress paradigms are commonly used in rats and mice to gain insight into the pathogenesis of these disorders. The social instability stress (SIS) paradigm entails frequent (up to several times a week) introduction of one or multiple unfamiliar same-sex home-cage partners. The subsequent recurring formation of a new social hierarchy results in chronic and unpredictable physical and social stress. PURPOSE We compare and discuss the stress-related behavioral and physiological impact of SIS protocols in rat and mouse, and address limitations due to protocol variability. We further provide practical recommendations to optimize reproducibility of SIS protocols. METHODS We conducted a systematic review in accordance with the PRISMA statement in the following three databases: PubMed, Web of Science and Scopus. Our search strategy was not restricted to year of publication but was limited to articles in English that were published in peer-reviewed journals. Search terms included "social* instab*" AND ("animal" OR "rodent" OR "rat*" OR "mice" OR "mouse"). RESULTS Thirty-three studies met our inclusion criteria. Fifteen articles used a SIS protocol in which the composition of two cage mates is altered daily for sixteen days (SIS16D). Eleven articles used a SIS protocol in which the composition of four cage mates is altered twice per week for 49 days (SIS49D). The remaining seven studies used SIS protocols that differed from these two protocols in experiment duration or cage mate quantity. Behavioral impact of SIS was primarily assessed by quantifying depressive-like, anxiety-like, social-, and cognitive behavior. Physiological impact of SIS was primarily assessed using metabolic parameters, hypothalamus-pituitary-adrenal axis activity, and the assessment of neurobiological parameters such as neuroplasticity and neurogenesis. CONCLUSION Both shorter and longer SIS protocols induce a wide range of stress-related behavioral and physiological impairments that are relevant for the pathophysiology of depression and anxiety disorders. To date, SIS16D has only been reported in rats, whereas SIS49D has only been reported in mice. Given this species-specific application as well as variability in reported SIS protocols, additional studies should determine whether SIS effects are protocol duration- or species-specific. We address several issues, including a lack of consistency in the used SIS protocols, and suggest practical, concrete improvements in design and reporting of SIS protocols to increase standardization and reproducibility of this etiologically relevant preclinical model of social stress.
Collapse
Affiliation(s)
- Amber Koert
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemie Ploeger
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudi L.H. Bockting
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
| | - Mathias V. Schmidt
- Max Planck Institute of Psychiatry, Research Group Neurobiology of Stress Resilience, Munich, Germany
| | - Paul J. Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Joram D. Mul
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
The Role of Social Stress in the Development of Inhibitory Control Deficit: A Systematic Review in Preclinical Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094953. [PMID: 34066570 PMCID: PMC8124175 DOI: 10.3390/ijerph18094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Inhibitory control deficit and impulsivity and compulsivity behaviours are present in different psychopathological disorders such as addiction, obsessive-compulsive disorders and schizophrenia, among others. Social relationships in humans and animals are governed by social organization rules, which modulate inhibitory control and coping strategies against stress. Social stress is associated with compulsive alcohol and drug use, pointing towards a determining factor in an increased vulnerability to inhibitory control deficit. The goal of the present review is to assess the implication of social stress and dominance on the vulnerability to develop impulsive and/or compulsive spectrum disorders, with the aid of the information provided by animal models. A systematic search strategy was carried out on the PubMed and Web of Science databases, and the most relevant information was structured in the text and tables. A total of 34 studies were recruited in the qualitative synthesis. The results show the role of social stress and dominance in increased drug and alcohol use, aggressive and impulsive behaviour. Moreover, the revised studies support the role of Dopaminergic (DA) activity and the alterations in the dopaminergic D1/D2 receptors as key factors in the development of inhibitory control deficit by social stress.
Collapse
|
7
|
Trucco EM. A review of psychosocial factors linked to adolescent substance use. Pharmacol Biochem Behav 2020; 196:172969. [PMID: 32565241 PMCID: PMC7415605 DOI: 10.1016/j.pbb.2020.172969] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Informed by ecological theories and models of influence, this review discusses various psychosocial risk and protective factors that contribute to adolescent substance use behavior. Given typical patterns of substance use initiation during this developmental period, an emphasis is placed on alcohol, cigarette, and marijuana use. FINDINGS Consistent with bioecological theories, peers and parents tend to have the strongest effect on adolescent substance use behavior. Influences can be both direct, such as offers and availability to use substances, as well as indirect influences, such as the perception of substance use approval. Schools and neighborhoods also contribute to adolescent substance use behavior, but this effect is often less direct. Moreover, the effect of neighborhoods on adolescent behavior reflects both structural components (e.g., neighborhood racial composition, teacher-student ratios) in addition to social process (e.g., neighborhood social cohesion, school connectedness). A review of parallel studies conducted with animals is also provided. SUMMARY Adolescent substance use behavior does not occur in a vacuum. Investigations must encompass the relevant social ecologies that affect adolescent behavior, including family, peer, school, and neighborhood contexts to provide a more complete understanding of substance use etiology.
Collapse
Affiliation(s)
- Elisa M Trucco
- Florida International University, Psychology Department, Center for Children and Families, 11200 SW 8th Street, AHC-1, Miami, FL 33199, United States of America.
| |
Collapse
|
8
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
9
|
Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Voluntary wheel running protects against the increase in ethanol consumption induced by social stress in mice. Drug Alcohol Depend 2020; 212:108004. [PMID: 32408137 DOI: 10.1016/j.drugalcdep.2020.108004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that exposure to social defeat (SD), a model of social stress, produces a long-term increase in the consumption of ethanol, most likely through an increase in the neuroinflammation response. The aim of the present study was to evaluate whether exposure to physical activity in the form of voluntary wheel running (VWR) could block the increase in ethanol consumption and the neuroinflammatory response induced by social stress. Mice were exposed to either 4 sessions of repeated social defeat (RSD) or a non-stressful experience. During the whole procedure, half of the mice were exposed to controlled physical activity, being allowed 1 h access to a low-profile running wheel three times a week. Three weeks after the last RSD, animals started the oral self-administration (SA) of ethanol (6% EtOH) procedure. Biological samples were taken 4 h after the first and the fourth RSD, 3 weeks after the last RSD, and after the SA procedure. Brain tissue (striatum) was used to determine protein levels of the chemokines fractalkine (CX3CL1) and SDF-1 (CXCL12). RSD induced an increase in ethanol consumption and caused greater motivation to obtain ethanol. The striatal levels of CX3CL1 and CXCL12 were also increased after the last RSD. VWR was able to reverse the increase in ethanol intake induced by social stress and the neuroinflammatory response. In conclusion, our results suggest that VWR could be a promising tool to prevent and reduce the detrimental effects induced by social stress.
Collapse
Affiliation(s)
- M D Reguilón
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Ferrer-Pérez
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - R Ballestín
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad De Psicología, Universitat De Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
10
|
Marcolin ML, Baumbach JL, Hodges TE, McCormick CM. The effects of social instability stress and subsequent ethanol consumption in adolescence on brain and behavioral development in male rats. Alcohol 2020; 82:29-45. [PMID: 31465790 DOI: 10.1016/j.alcohol.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
Excessive drinking in adolescence continues to be a problem, and almost a quarter of young Canadians have reported consuming five or more alcoholic drinks in one occasion in recent surveys. The consequences of such drinking may be more pronounced when commenced in adolescence, given the ongoing brain development during this period of life. Here, we investigated the consequences of 3 weeks' intermittent access to ethanol in mid-adolescence to early adulthood in rats, and the extent to which a stress history moderated the negative consequences of ethanol access. In experiment 1, male rats that underwent adolescent social instability stress (SS; daily 1 h isolation + return to unfamiliar cage partner every day from postnatal day [PND] 30-45) did not differ from control (CTL) rats in intake of 10% ethanol sweetened with 0.1% saccharin (access period; PND 47-66). Ethanol drinking reduced proteins relevant for synaptic plasticity (αCaMKII, βCaMKII, and PSD-95) in the dorsal hippocampus, and in CTL rats only in the prefrontal cortex (αCaMKII and PSD 95), attenuating the difference between CTL and SS rats in the water-drinking group. In experiment 2, ethanol also attenuated the difference between SS and CTL rats in a social interaction test by reducing social interaction in SS rats; CTL rats, however, had a higher intake of ethanol than did SS rats during the access period. Ethanol drinking reduced baseline and fear recall recovery concentrations of corticosterone relative to those exposed only to water, although there was no effect of either ethanol or stress history on fear conditioning. Ethanol drinking did not influence intake after 9 days of withdrawal; however, ethanol-naïve SS rats drank more than did CTL rats when given a 24-h access in adulthood. These results reveal a complex relationship between stress history and ethanol intake in adolescence on outcomes in adulthood.
Collapse
Affiliation(s)
- Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
11
|
Wilkin MM, Menard JL. Social housing ameliorates the enduring effects of intermittent physical stress during mid-adolescence. Physiol Behav 2020; 214:112750. [DOI: 10.1016/j.physbeh.2019.112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022]
|
12
|
Evans O, Rodríguez-Borillo O, Font L, Currie PJ, Pastor R. Alcohol Binge Drinking and Anxiety-Like Behavior in Socialized Versus Isolated C57BL/6J Mice. Alcohol Clin Exp Res 2019; 44:244-254. [PMID: 31713874 DOI: 10.1111/acer.14236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Binge alcohol drinking has been characterized as a key feature of alcoholism. The drinking-in-the-dark (DID) preclinical model, a procedure that promotes high levels of ethanol (EtOH) intake in short periods of time, has been extensively used to investigate neuropharmacological and genetic determinants of binge-like EtOH consumption. Using DID methodology, alcohol-preferring strains of mice such as C57BL/6J (B6) mice consume enough EtOH to achieve blood concentrations (≥1.0 mg/ml) associated with behavioral intoxication (i.e., motor incoordination). DID procedures typically involve the use of socially isolated animals (single-housed prior to and during the experiment). Previous research indicates that stress associated with social isolation can induce anxiety-like behavior and promote increases in EtOH intake. The present study investigates the role of housing conditions in anxiety-like behavior and binge-like EtOH intake using a DID procedure. METHODS Male and female B6 mice were isolated or pair-housed for a period of 6 weeks prior to evaluation of anxiety-like (elevated plus maze, light and dark box, open field) and drinking (water, 10% sucrose, 10 to 30% EtOH) behavior. In order to measure intake, a variation of the standard DID procedure using a removable, transparent, and perforated plastic barrier strip (designed to temporarily divide the cage in 2) was introduced. This allowed for individual intake records (2-hour test) of isolated and socially housed animals. RESULTS Increased anxiety-like behavior and reduced sucrose consumption were found in isolated mice. The effects of housing conditions on EtOH intake were sex- and concentration-dependent. In male mice, isolation increased 20 and 30% EtOH intake. In females, however, an increased intake of EtOH (30%) was found in socialized animals. No effects of housing or sex were found at EtOH 10%. CONCLUSIONS Together with previous literature, the present study suggests that social isolation can promote anxiety-associated behavior and produce sex-dependent changes in binge-like EtOH consumption.
Collapse
Affiliation(s)
- Ophelia Evans
- Department of Psychology, Reed College, Portland, Oregon
| | | | - Laura Font
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain
| | - Paul J Currie
- Department of Psychology, Reed College, Portland, Oregon
| | - Raúl Pastor
- Department of Psychology, Reed College, Portland, Oregon.,Area de Psicobiología, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
13
|
Gamble DN, Josefson CC, Hennessey MK, Davis AM, Waters RC, Jones BN, Belton DM, Hall NI, Costen TJ, Kirstein CL, Maldonado-Devincci AM. Social Interaction With an Alcohol-Intoxicated or Cocaine-Injected Peer Selectively Alters Social Behaviors and Drinking in Adolescent Male and Female Rats. Alcohol Clin Exp Res 2019; 43:2525-2535. [PMID: 31585020 PMCID: PMC11649336 DOI: 10.1111/acer.14208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Drinking alcohol is facilitated by social interactions with peers, especially during adolescence. The importance of peer social influences during adolescence on alcohol and substance use has recently received more attention. We have shown that social interaction with an alcohol-intoxicated peer influences adolescent alcohol drinking differently in male and female rats using the demonstrator-observer paradigm. The present set of experiments analyzed the social interaction session to determine changes in social behaviors and subsequent alcohol drinking in adolescent male and female rats. METHODS Specifically, in Experiment 1, we determined whether specific social behaviors were altered during interaction with an alcohol-intoxicated demonstrator administered 1.5 g/kg ethanol (EtOH) and assessed changes in EtOH intake in adolescent observers. Experiment 2 examined changes in voluntary saccharin consumption to determine whether social interaction with an alcohol-intoxicated demonstrator administered 1.5 g/kg EtOH altered consumption of a palatable solution. In Experiment 3, we administered saline, and a low (5 mg/kg) or high (20 mg/kg) dose of cocaine to the demonstrator and assessed changes in the adolescent observers to determine whether social interaction with a "drugged" peer altered social behaviors and voluntary EtOH intake. RESULTS We showed that social interaction with an alcohol-intoxicated demonstrator administered 1.5 g/kg EtOH (i) decreased social play and increased social investigation and social contact in adolescent male and female observers, (ii) did not alter nonsocial behaviors, (iii) did not alter saccharin consumption, and (iv) increased voluntary EtOH intake in adolescent female but not male observers. When the peer was injected with cocaine, (i) social play was dose-dependently decreased, (ii) there were no changes in other social or nonsocial behaviors, and (iii) voluntary EtOH intake in adolescent male and female observers was unaffected. CONCLUSIONS The present results are consistent and extend our previous work, showing that social interaction with an alcohol-intoxicated peer selectively alters social behaviors and alcohol drinking in adolescent rats. Females appear to be more sensitive to the elevating effects of social interaction on voluntary EtOH consumption.
Collapse
Affiliation(s)
- Danielle N. Gamble
- Department of Psychology, Virginia State University, College of Natural and Health Sciences, VA 23806
| | - Chloe C. Josefson
- Department of Psychology, Cognitive and Neurosciences, University of South Florida, Tampa, FL 33620
| | - Mary K. Hennessey
- Department of Psychology, Cognitive and Neurosciences, University of South Florida, Tampa, FL 33620
| | - Ashley M. Davis
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| | - Renee C. Waters
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| | - Brooke N. Jones
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| | - Destiny M. Belton
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| | - Nzia I. Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| | - Taylor J. Costen
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| | - Cheryl L. Kirstein
- Department of Psychology, Cognitive and Neurosciences, University of South Florida, Tampa, FL 33620
- Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, FL 33612
| | - Antoniette M. Maldonado-Devincci
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411
| |
Collapse
|
14
|
Breach MR, Moench KM, Wellman CL. Social instability in adolescence differentially alters dendritic morphology in the medial prefrontal cortex and its response to stress in adult male and female rats. Dev Neurobiol 2019; 79:839-856. [PMID: 31612626 DOI: 10.1002/dneu.22723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
Adolescence is an important period for HPA axis development and synapse maturation and reorganization in the prefrontal cortex (PFC). Thus, stress during adolescence could alter stress-sensitive brain regions such as the PFC and may alter the impact of future stressors on these brain regions. Given that women are more susceptible to many stress-linked psychological disorders in which dysfunction of PFC is implicated, and that this increased vulnerability emerges in adolescence, stress during this time could have sex-dependent effects. Therefore, we investigated the effects of adolescent social instability stress (SIS) on dendritic morphology of Golgi-stained pyramidal cells in the medial PFC of adult male and female rats. We then examined dendritic reorganization following chronic restraint stress (CRS) with and without a rest period in adult rats that had been stressed in adolescence. Adolescent SIS conferred long-term alterations in prelimbic of males and females, whereby females show reduced apical length and basilar thin spine density and males show reduced basilar length. CRS in adulthood failed to produce immediate dendritic remodeling in SIS rats. However, CRS followed by a rest period reduced apical dendritic length and increases mushroom spine density in adolescently stressed adult males. Conversely, CRS followed by rest produced apical outgrowth and decreased mushroom spine density in adolescently stressed adult females. These results suggest that stress during adolescence alters development of the PFC and modulates stress-induced dendritic changes in adulthood.
Collapse
Affiliation(s)
- Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
15
|
Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proc Natl Acad Sci U S A 2019; 116:9644-9651. [PMID: 31010921 DOI: 10.1073/pnas.1820832116] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Psychological stress during adolescence may cause enduring cognitive deficits and anxiety in both humans and animals, accompanied by rearrangement of numerous brain structures and functions. A healthy diet is essential for proper brain development and maintenance of optimal cognitive functions during adulthood. Furthermore, nutritional components profoundly affect the intestinal community of microbes that may affect gut-brain communication. We adopted a relatively mild stress protocol, social instability stress, which when repeatedly administered to juvenile rats modifies cognitive behaviors and plasticity markers in the brain. We then tested the preventive effect of a prolonged diet enriched with the ω-3 polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid and vitamin A. Our findings highlight the beneficial effects of this enriched diet on cognitive memory impairment induced by social instability stress, as stressed rats fed the enriched diet exhibited performance undistinguishable from that of nonstressed rats on both emotional and reference memory tests. Furthermore, in stressed rats, the decline in brain-derived neurotrophic factor expression in the hippocampus and shifts in the microbiota composition were normalized by the enriched diet. The detrimental behavioral and neurochemical effects of adolescent stress, as well as the protective effect of the enriched diet, were maintained throughout adulthood, long after the exposure to the stressful environment was terminated. Taken together, our results strongly suggest a beneficial role of nutritional components in ameliorating stress-related behaviors and associated neurochemical and microbiota changes, opening possible new venues in the field of nutritional neuropsychopharmacology.
Collapse
|