1
|
Samandra R, Rosa MGP, Mansouri FA. How Do Common Marmosets Maintain the Balance Between Response Execution and Action Inhibition? Am J Primatol 2025; 87:e23717. [PMID: 39783787 PMCID: PMC11714342 DOI: 10.1002/ajp.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Socio-dynamic situations require a balance between response execution and action inhibition. Nonadaptive imbalance between response inhibition and execution exists in neurodevelopmental and neuropsychological disorders. To investigate the underlying neural mechanisms of cognitive control and the related deficits, comparative studies in human and nonhuman primates are crucial. Previous stop-signal tasks in humans and macaque monkeys have examined response execution (response time (RT) and accuracy in Go trials) and action inhibition (stop-signal reaction time (SSRT)). Even though marmosets are generally considered suitable translational animal models for research on social and cognitive deficits, their ability to inhibit behavior remains poorly characterized. We developed a marmoset stop-signal task, in which RT could be measured at millisecond resolution. All four marmosets performed many repeated Go trials with high accuracy (≥ 70%). Additionally, all marmosets successfully performed Stop trials. Using a performance-dependent tracking procedure, the accuracy in Stop trials was maintained around 50%, which enabled reliable SSRT estimates in marmosets for the first time. The mean SSRT values across sessions ranged between 677 and 1464 ms across the four marmosets. We also validated the suitability and practicality of this novel task for examining executive functions by testing the effects of a natural hormone, oxytocin, on response execution and action inhibition in marmosets. This marmoset model, for reliable (millisecond resolution) assessment of the balance between response execution and inhibition, will further facilitate studying the developmental alterations in inhibition ability and examining the effects of various contextual and environmental factors on marmosets' executive functions.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Marcello G. P. Rosa
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Farshad A. Mansouri
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Biazzi RB, Takahashi DY, Ghazanfar AA. Altricial brains and the evolution of infant vocal learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620895. [PMID: 39553938 PMCID: PMC11565719 DOI: 10.1101/2024.10.29.620895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human infant vocal development is strongly influenced by interactions with caregivers who reinforce more speech-like sounds. This trajectory of vocal development in humans is radically different from those of our close phylogenetic relatives, Old World monkeys and apes. In these primates most closely related to humans on the evolutionary tree, social feedback plays no significant role in their vocal development. Oddly, infant marmoset monkeys, a more distantly related New World primate, do exhibit socially guided vocal learning. To explore what developmental mechanism could have evolved to account for these behavioral differences, we hypothesized that the evolution of human and marmoset vocal learning in early infancy in both species is because they are born neurally altricial relative to other primate and in a cooperative breeding social environment. Our analysis found that, indeed, human and marmoset brain are growing faster at birth when compared with chimpanzees and rhesus macaques, making them altricial relative to these primates. We formalized our hypothesis using a logistic growth model showing that the maturation of a system dependent on the rate of brain growth and the amount of social stimuli benefits from an altricial brain and a cooperative breeding environment. Our data suggest that in primates, the evolution of socially guided vocal learning during early infancy in humans and marmosets was afforded by infants with a relatively altricial brain and behavior, sustained and stimulated by cooperative breeding environments. Significance statement Humans rely on social feedback from caregivers to learn how to produce species-typical sounds, whereas other primates like macaque monkeys or chimpanzees do not. What accounts for this difference in developmental strategies? We tested the hypothesis that being born with a more immature (thus more plastic) brain may be the reason by using marmoset monkeys. This species is more distantly related to humans but exhibit the same type of vocal learning and who have a similar socially rich infant care environment. We found that, indeed, human and marmoset brain are growing faster at birth when compared with chimpanzees and rhesus macaques, making them altricial relative to these primates and this explains their similar vocal developmental strategies.
Collapse
|
3
|
Ghazanfar AA, Gomez-Marin A. The central role of the individual in the history of brains. Neurosci Biobehav Rev 2024; 163:105744. [PMID: 38825259 PMCID: PMC11246226 DOI: 10.1016/j.neubiorev.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Every species' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over "errors in time" that we often make when comparing development across species. Next, we reveal how an individual's development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the "the actual now" and "the presence of the past". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante 03550, Spain.
| |
Collapse
|
4
|
Zamorano-Abramson J, Michon M, Hernández-Lloreda MV, Aboitiz F. Multimodal imitative learning and synchrony in cetaceans: A model for speech and singing evolution. Front Psychol 2023; 14:1061381. [PMID: 37138983 PMCID: PMC10150787 DOI: 10.3389/fpsyg.2023.1061381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 05/05/2023] Open
Abstract
Multimodal imitation of actions, gestures and vocal production is a hallmark of the evolution of human communication, as both, vocal learning and visual-gestural imitation, were crucial factors that facilitated the evolution of speech and singing. Comparative evidence has revealed that humans are an odd case in this respect, as the case for multimodal imitation is barely documented in non-human animals. While there is evidence of vocal learning in birds and in mammals like bats, elephants and marine mammals, evidence in both domains, vocal and gestural, exists for two Psittacine birds (budgerigars and grey parrots) and cetaceans only. Moreover, it draws attention to the apparent absence of vocal imitation (with just a few cases reported for vocal fold control in an orangutan and a gorilla and a prolonged development of vocal plasticity in marmosets) and even for imitation of intransitive actions (not object related) in monkeys and apes in the wild. Even after training, the evidence for productive or "true imitation" (copy of a novel behavior, i.e., not pre-existent in the observer's behavioral repertoire) in both domains is scarce. Here we review the evidence of multimodal imitation in cetaceans, one of the few living mammalian species that have been reported to display multimodal imitative learning besides humans, and their role in sociality, communication and group cultures. We propose that cetacean multimodal imitation was acquired in parallel with the evolution and development of behavioral synchrony and multimodal organization of sensorimotor information, supporting volitional motor control of their vocal system and audio-echoic-visual voices, body posture and movement integration.
Collapse
Affiliation(s)
- José Zamorano-Abramson
- Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: José Zamorano-Abramson,
| | - Maëva Michon
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience, Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de, Santiago, Chile
- Maëva Michon,
| | - Ma Victoria Hernández-Lloreda
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Campus de Somosaguas, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Aboitiz
- Laboratory for Cognitive and Evolutionary Neuroscience, Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de, Santiago, Chile
| |
Collapse
|
5
|
Burkart JM, Adriaense JEC, Brügger RK, Miss FM, Wierucka K, van Schaik CP. A convergent interaction engine: vocal communication among marmoset monkeys. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210098. [PMID: 35876206 PMCID: PMC9315454 DOI: 10.1098/rstb.2021.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 09/14/2023] Open
Abstract
To understand the primate origins of the human interaction engine, it is worthwhile to focus not only on great apes but also on callitrichid monkeys (marmosets and tamarins). Like humans, but unlike great apes, callitrichids are cooperative breeders, and thus habitually engage in coordinated joint actions, for instance when an infant is handed over from one group member to another. We first explore the hypothesis that these habitual cooperative interactions, the marmoset interactional ethology, are supported by the same key elements as found in the human interaction engine: mutual gaze (during joint action), turn-taking, volubility, as well as group-wide prosociality and trust. Marmosets show clear evidence of these features. We next examine the prediction that, if such an interaction engine can indeed give rise to more flexible communication, callitrichids may also possess elaborate communicative skills. A review of marmoset vocal communication confirms unusual abilities in these small primates: high volubility and large vocal repertoires, vocal learning and babbling in immatures, and voluntary usage and control. We end by discussing how the adoption of cooperative breeding during human evolution may have catalysed language evolution by adding these convergent consequences to the great ape-like cognitive system of our hominin ancestors. This article is part of the theme issue 'Revisiting the human 'interaction engine': comparative approaches to social action coordination'.
Collapse
Affiliation(s)
- J. M. Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| | - J. E. C. Adriaense
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R. K. Brügger
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F. M. Miss
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Wierucka
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - C. P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| |
Collapse
|
6
|
Narayanan DZ, Takahashi DY, Kelly LM, Hlavaty SI, Huang J, Ghazanfar AA. Prenatal development of neonatal vocalizations. eLife 2022; 11:78485. [PMID: 35880740 PMCID: PMC9391037 DOI: 10.7554/elife.78485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop, remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.
Collapse
Affiliation(s)
- Darshana Z Narayanan
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Lauren M Kelly
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Sabina I Hlavaty
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Junzhou Huang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, United States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
7
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| |
Collapse
|
8
|
Zhang YS, Ghazanfar AA. Evolving alternative neural pathways for vocal dexterity. Proc Natl Acad Sci U S A 2022; 119:e2205899119. [PMID: 35687663 PMCID: PMC9231600 DOI: 10.1073/pnas.2205899119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yisi S. Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Asif A. Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| |
Collapse
|