1
|
Pratelli M, Spitzer NC. Drugs of abuse drive neurotransmitter plasticity that alters behavior: implications for mental health. Front Behav Neurosci 2025; 19:1551213. [PMID: 40177329 PMCID: PMC11962007 DOI: 10.3389/fnbeh.2025.1551213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Neurotransmission is a complex process with multiple levels of regulation that, when altered, can significantly impact mental health. Neurons in the adult brain can release more than one transmitter and environmental stimuli can change the type of transmitter neurons express. Changes in the transmitter neurons express can generate changes in animal behavior. The ability of neurons to express multiple transmitters and/or switch them in response to environmental stimuli likely evolved to provide flexibility and complexity to neuronal circuit function in an ever-changing environment. However, this adaptability can become maladaptive when generating behavioral alterations that are unfit for the environment in which the animal lives or the tasks it needs to perform. Repeated exposure to addictive substances induces long-lasting molecular and synaptic changes, driving the appearance of maladaptive behaviors that can result in drug misuse and addiction. Recent findings have shown that one way drugs of abuse alter the brain is by inducing changes in the transmitter neurons express. Here, we review evidence of prolonged exposure to addictive substances inducing changes in the number of neurons expressing the neuropeptide orexin, the neuromodulator dopamine, and the inhibitory transmitter GABA. These findings show that drug-induced transmitter plasticity is conserved across species, that addictive substances belonging to different classes of chemicals can induce the same type of plasticity, and that exposure to only one drug can cause different neuronal types to change the transmitter they express. Importantly, drug-induced transmitter plasticity contributes to the long-term negative effects of drug consumption, and it can, in some cases, be either prevented or reversed to alleviate these outcomes. Regional neuronal hyperactivity appears to modulate the appearance and stabilization of drug-induced changes in transmitter expression, which are no longer observed when activity is normalized. Overall, these findings underscore the importance of continuing to investigate the extent and behavioral significance of drug-induced neurotransmitter plasticity and exploring whether non-invasive strategies can be used to reverse it as a means to mitigate the maladaptive effects of drug use.
Collapse
Affiliation(s)
- Marta Pratelli
- Department of Neurobiology, School of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Department of Neurobiology, School of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Chen N, Zhang Y, Rivera-Rodriguez EJ, Yu AD, Hobin M, Rosbash M, Griffith LC. Widespread posttranscriptional regulation of cotransmission. SCIENCE ADVANCES 2023; 9:eadg9836. [PMID: 37267358 PMCID: PMC10413644 DOI: 10.1126/sciadv.adg9836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
While neurotransmitter identity was once considered singular and immutable for mature neurons, it is now appreciated that one neuron can release multiple neuroactive substances (cotransmission) whose identities can even change over time. To explore the mechanisms that tune the suite of transmitters a neuron releases, we developed transcriptional and translational reporters for cholinergic, glutamatergic, and GABAergic signaling in Drosophila. We show that many glutamatergic and GABAergic cells also transcribe cholinergic genes, but fail to accumulate cholinergic effector proteins. Suppression of cholinergic signaling involves posttranscriptional regulation of cholinergic transcripts by the microRNA miR-190; chronic loss of miR-190 function allows expression of cholinergic machinery, reducing and fragmenting sleep. Using a "translation-trap" strategy, we show that neurons in these populations have episodes of transient translation of cholinergic proteins, demonstrating that suppression of cotransmission is actively modulated. Posttranscriptional restriction of fast transmitter cotransmission provides a mechanism allowing reversible tuning of neuronal output.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuel J. Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Albert D. Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Hobin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Rosbash
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
3
|
Anderson KA, Whitehead BJ, Petersen ED, Kemme MR, Wedster A, Hochgeschwender U, Sandstrom MI. Behavioral context improves optogenetic stimulation of transplanted dopaminergic cells in unilateral 6-OHDA rats. Behav Brain Res 2023; 441:114279. [PMID: 36586489 DOI: 10.1016/j.bbr.2022.114279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy has long been a popular method of treatment for Parkinson's disease currently being researched in both preclinical and clinical settings. While early clinical results are based upon fetal tissue transplants rather than stem cell transplants, the lack of successful integration in some patients and gradual loss of effect in others suggests a more robust protocol is needed. We propose a two-front approach, one where transplants are directly stimulated in coordination with host activity elicited by behavioral tasks, which we refer to as behavioral context. After a pilot with unilateral 6-OHDA rats transplanted with dopaminergic cells differentiated from mesenchymal stem cells that were optogenetically stimulated during a swim task, we discovered that early stimulation predicted lasting reduction of motor deficits, even in the absence of later stimulation. This led to a follow-up with n = 21 rats split into three groups: one stimulated while performing a swim task (Stim-Swim; St-Sw), one not stimulated while swimming (NoStim-Swim; NSt-Sw), and one stimulated while stationary in a bowl (Stim-NoSwim; St-NSw). After initial stimulation (or lack thereof), all rats were retested two and seven days later with the swim task in the absence of stimulation. The St-Sw group gradually achieved and maintained symmetrical limb use, whereas the NSt-Sw group showed persistent asymmetry and the St-NSw group showed mixed results. This supports the notion that stem cell therapy should integrate targeted stimulation of the transplant with behavioral stimulation of the host tissue to encourage proper functional integration of the graft.
Collapse
Affiliation(s)
- Kevin A Anderson
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA
| | - Bailey J Whitehead
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA; West Virginia University, Rockefeller Neuroscience Institute, College of Medicine, Morgantown, WV, USA
| | - Eric D Petersen
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA; Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA; Central Michigan University, Biochemistry, Cell, and Molecular Biology Program, Mt. Pleasant, MI, USA
| | - Madison R Kemme
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA; Michigan State University, College of Human Medicine, East Lansing, MI, USA
| | - Anna Wedster
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA
| | - Ute Hochgeschwender
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA; Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA; Central Michigan University, Biochemistry, Cell, and Molecular Biology Program, Mt. Pleasant, MI, USA
| | - Michael I Sandstrom
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA; Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA.
| |
Collapse
|
4
|
Chen N, Zhang Y, Rivera-Rodriguez EJ, Yu AD, Hobin M, Rosbash M, Griffith LC. Widespread post-transcriptional regulation of co-transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530653. [PMID: 36909471 PMCID: PMC10002718 DOI: 10.1101/2023.03.01.530653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
While neurotransmitter identity was once considered singular and immutable for mature neurons, it is now appreciated that one neuron can release multiple neuroactive substances (co-transmission) whose identities can even change over time. To explore the mechanisms that tune the suite of transmitters a neuron releases, we developed transcriptional and translational reporters for cholinergic, glutamatergic, and GABAergic signaling in Drosophila . We show that many glutamatergic and GABAergic cells also transcribe cholinergic genes, but fail to accumulate cholinergic effector proteins. Suppression of cholinergic signaling involves posttranscriptional regulation of cholinergic transcripts by the microRNA miR-190; chronic loss of miR-190 function allows expression of cholinergic machinery, reducing and fragmenting sleep. Using a "translation-trap" strategy we show that neurons in these populations have episodes of transient translation of cholinergic proteins, demonstrating that suppression of co-transmission is actively modulated. Posttranscriptional restriction of fast transmitter co-transmission provides a mechanism allowing reversible tuning of neuronal output. One-Sentence Summary Cholinergic co-transmission in large populations of glutamatergic and GABAergic neurons in the Drosophila adult brain is controlled by miR-190.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuel J. Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Albert D. Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Hobin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Rosbash
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
5
|
Lai JIC, Porcu A, Romoli B, Keisler M, Manfredsson FP, Powell SB, Dulcis D. Nicotine-Mediated Recruitment of GABAergic Neurons to a Dopaminergic Phenotype Attenuates Motor Deficits in an Alpha-Synuclein Parkinson's Model. Int J Mol Sci 2023; 24:4204. [PMID: 36835612 PMCID: PMC9960650 DOI: 10.3390/ijms24044204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Previous work revealed an inverse correlation between tobacco smoking and Parkinson's disease (PD) that is associated with nicotine-induced neuroprotection of dopaminergic (DA) neurons against nigrostriatal damage in PD primates and rodent models. Nicotine, a neuroactive component of tobacco, can directly alter the activity of midbrain DA neurons and induce non-DA neurons in the substantia nigra (SN) to acquire a DA phenotype. Here, we investigated the recruitment mechanism of nigrostriatal GABAergic neurons to express DA phenotypes, such as transcription factor Nurr1 and DA-synthesizing enzyme tyrosine hydroxylase (TH), and the concomitant effects on motor function. Wild-type and α-syn-overexpressing (PD) mice treated with chronic nicotine were assessed by behavioral pattern monitor (BPM) and immunohistochemistry/in situ hybridization to measure behavior and the translational/transcriptional regulation of neurotransmitter phenotype following selective Nurr1 overexpression or DREADD-mediated chemogenetic activation. We found that nicotine treatment led to a transcriptional TH and translational Nurr1 upregulation within a pool of SN GABAergic neurons in wild-type animals. In PD mice, nicotine increased Nurr1 expression, reduced the number of α-syn-expressing neurons, and simultaneously rescued motor deficits. Hyperactivation of GABA neurons alone was sufficient to elicit de novo translational upregulation of Nurr1. Retrograde labeling revealed that a fraction of these GABAergic neurons projects to the dorsal striatum. Finally, concomitant depolarization and Nurr1 overexpression within GABA neurons were sufficient to mimic nicotine-mediated dopamine plasticity. Revealing the mechanism of nicotine-induced DA plasticity protecting SN neurons against nigrostriatal damage could contribute to developing new strategies for neurotransmitter replacement in PD.
Collapse
Affiliation(s)
- Jessica IChi Lai
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Benedetto Romoli
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Susan B. Powell
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Abstract
Neurotransmitter switching is a form of brain plasticity in which an environmental stimulus causes neurons to replace one neurotransmitter with another, often resulting in changes in behavior. This raises the possibility of applying a specific environmental stimulus to induce a switch that can enhance a desirable behavior or ameliorate symptoms of a specific pathology. For example, a stimulus inducing an increase in the number of neurons expressing dopamine could treat Parkinson's disease, or one affecting the number expressing serotonin could alleviate depression. This may already be producing successful treatment outcomes without our knowing that transmitter switching is involved, with improvement of motor function through physical activity and cure of seasonal depression with phototherapy. This review presents prospects for future investigation of neurotransmitter switching, considering opportunities and challenges for future research and describing how the investigation of transmitter switching is likely to evolve with new tools, thus reshaping our understanding of both normal brain function and mental illness.
Collapse
|
8
|
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia. J Neurosci 2020; 40:569-584. [PMID: 31792153 PMCID: PMC6961996 DOI: 10.1523/jneurosci.1802-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Christiana J Stark
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Maria N Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Lily Luo
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
9
|
Lai IC, Dulcis D. Nicotine-induced dopamine plasticity: a gateway to neurotransmitter replacement? Neural Regen Res 2020; 15:73-74. [PMID: 31535653 PMCID: PMC6862394 DOI: 10.4103/1673-5374.264451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- I-Chi Lai
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Romoli B, Lozada AF, Sandoval IM, Manfredsson FP, Hnasko TS, Berg DK, Dulcis D. Neonatal Nicotine Exposure Primes Midbrain Neurons to a Dopaminergic Phenotype and Increases Adult Drug Consumption. Biol Psychiatry 2019; 86:344-355. [PMID: 31202491 PMCID: PMC7359410 DOI: 10.1016/j.biopsych.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Nicotine intake induces addiction through neuroplasticity of the reward circuitry, altering the activity of dopaminergic neurons of the ventral tegmental area. Prior work demonstrated that altered circuit activity can change neurotransmitter expression in the developing and adult brain. Here we investigated the effects of neonatal nicotine exposure on the dopaminergic system and nicotine consumption in adulthood. METHODS Male and female mice were used for two-bottle-choice test, progressive ratio breakpoint test, immunohistochemistry, RNAscope, quantitative polymerase chain reaction, calcium imaging, and DREADD (designer receptor exclusively activated by designer drugs)-mediated chemogenic activation/inhibition experiments. RESULTS Neonatal nicotine exposure potentiates drug preference in adult mice, induces alterations in calcium spike activity of midbrain neurons, and increases the number of dopamine-expressing neurons in the ventral tegmental area. Specifically, glutamatergic neurons are first primed to express transcription factor Nurr1, then acquire the dopaminergic phenotype following nicotine re-exposure in adulthood. Enhanced neuronal activity combined with Nurr1 expression is both necessary and sufficient for the nicotine-mediated neurotransmitter plasticity to occur. CONCLUSIONS Our findings illuminate a new mechanism of neuroplasticity by which early nicotine exposure primes the reward system to display increased susceptibility to drug consumption in adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California.
| |
Collapse
|
11
|
Schall T. A Warning for Smoking Parents. Biol Psychiatry 2019; 86:e17-e18. [PMID: 31416518 DOI: 10.1016/j.biopsych.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Terra Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Pritchard R, Chen H, Romoli B, Spitzer NC, Dulcis D. Photoperiod-induced neurotransmitter plasticity declines with aging: An epigenetic regulation? J Comp Neurol 2019; 528:199-210. [PMID: 31343079 DOI: 10.1002/cne.24747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Neuroplasticity has classically been understood to arise through changes in synaptic strength or synaptic connectivity. A newly discovered form of neuroplasticity, neurotransmitter switching, involves changes in neurotransmitter identity. Chronic exposure to different photoperiods alters the number of dopamine (tyrosine hydroxylase, TH+) and somatostatin (SST+) neurons in the paraventricular nucleus (PaVN) of the hypothalamus of adult rats and results in discrete behavioral changes. Here, we investigate whether photoperiod-induced neurotransmitter switching persists during aging and whether epigenetic mechanisms of histone acetylation and DNA methylation may contribute to this neurotransmitter plasticity. We show that this plasticity in rats is robust at 1 and at 3 months but reduced in TH+ neurons at 12 months and completely abolished in both TH+ and SST+ neurons by 18 months. De novo expression of DNMT3a catalyzing DNA methylation and anti-AcetylH3 assessing histone 3 acetylation were observed following short-day photoperiod exposure in both TH+ and SST+ neurons at 1 and 3 months while an overall increase in DNMT3a in SST+ neurons paralleled neuroplasticity reduction at 12 and 18 months. Histone acetylation increased in TH+ neurons and decreased in SST+ neurons following short-day exposure at 3 months while the total number of anti-AcetylH3+ PaVN neurons remained constant. Reciprocal histone acetylation in TH+ and SST+ neurons indicates the importance of studying epigenetic regulation at the circuit level for identified cell phenotypes. The findings may be useful for developing approaches for noninvasive treatment of disorders characterized by neurotransmitter dysfunction.
Collapse
Affiliation(s)
- Rory Pritchard
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.,Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Helene Chen
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Ben Romoli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
13
|
Huguet G, Temel Y, Kádár E, Pol S, Casaca-Carreira J, Segura-Torres P, Jahanshahi A. Altered expression of dopaminergic cell fate regulating genes prior to manifestation of symptoms in a transgenic rat model of Huntington's disease. Brain Res 2019; 1712:101-108. [PMID: 30711400 DOI: 10.1016/j.brainres.2019.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Hyperactivity of the dopaminergic pathway is thought to contribute to clinical symptoms in the early stages of Huntington's disease (HD). It is suggested to be result of a reduced dopaminergic inhibition by degeneration of medium spiny neurons in the striatum. Previously, we have shown that the number of dopaminergic cells is increased in the dorsal raphe nucleus (DRN) of HD patients and transgenic HD (tgHD) rats during the manifestation phase of the disease; as well as in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) of tgHD rats. To address whether these changes are secondary to neurodegeneration or take place in the pre-manifest phase of the disease, we examined the expression of genes controlling neuronal cell fate and genes that define dopaminergic cell phenotype. In the SNc-VTA of tgHD rats, Msx1 was upregulated, which correlated with an altered expression of transcription factors Zbtb16 and Tcf12. Zbtb16 was upregulated in the DRN and it was the only gene that showed a correlated expression in the tgHD rats between SNc-VTA and DRN. Zbtb16 may be a candidate for regionally tuning its cell populations, resulting in the increase in dopaminergic cells observed in our previous studies. Here, we demonstrated an altered expression of genes related to dopaminergic cell fate regulation in the brainstem of 6 months-old tgHD rats. This suggests that changes in dopaminergic system in HD precede the manifestation of clinical symptoms, contradicting the theory that hyperdopaminergic status in HD is a consequence of neurodegeneration in the striatum.
Collapse
Affiliation(s)
- Gemma Huguet
- Departament de Biologia, Universitat de Girona, Girona, Spain.
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Elisabet Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain.
| | - Sylvana Pol
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Joao Casaca-Carreira
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
14
|
Growth at Cold Temperature Increases the Number of Motor Neurons to Optimize Locomotor Function. Curr Biol 2019; 29:1787-1799.e5. [PMID: 31130453 PMCID: PMC7501754 DOI: 10.1016/j.cub.2019.04.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 01/18/2023]
Abstract
During vertebrate development, spinal neurons differentiate and connect to generate a system that performs sensorimotor functions critical for survival. Spontaneous Ca2+ activity regulates different aspects of spinal neuron differentiation. It is unclear whether environmental factors can modulate this Ca2+ activity in developing spinal neurons to alter their specialization and ultimately adjust sensorimotor behavior to fit the environment. Here, we show that growing Xenopus laevis embryos at cold temperatures results in an increase in the number of spinal motor neurons in larvae. This change in spinal cord development optimizes the escape response to gentle touch of animals raised in and tested at cold temperatures. The cold-sensitive channel TRPM8 increases Ca2+ spike frequency of developing ventral spinal neurons, which in turn regulates expression of the motor neuron master transcription factor HB9. TRPM8 is necessary for the increase in motor neuron number of animals raised in cold temperatures and for their enhanced sensorimotor behavior when tested at cold temperatures. These findings suggest the environment modulates neuronal differentiation to optimize the behavior of the developing organism. Spencer et al. discover that Xenopus larvae reared in cold temperature are better equipped to escape upon touch at cold temperature relative to warm-grown siblings. This advantage is dependent on the cold-sensitive channel TRPM8, which is necessary for increased Ca2+ spike frequency in embryonic spinal neurons, their differentiation, and survival.
Collapse
|
15
|
Sequeira A, Shen K, Gottlieb A, Limon A. Human brain transcriptome analysis finds region- and subject-specific expression signatures of GABA AR subunits. Commun Biol 2019; 2:153. [PMID: 31069263 PMCID: PMC6494906 DOI: 10.1038/s42003-019-0413-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022] Open
Abstract
Altered expression of GABA receptors (GABAARs) has been implicated in neurological and psychiatric disorders, but limited information about region-specific GABAAR subunit expression in healthy human brains, heteromeric assembly of major isoforms, and their collective organization across healthy individuals, are major roadblocks to understanding their role in non-physiological states. Here, by using microarray and RNA-Seq datasets-from single cell nuclei to global brain expression-from the Allen Institute, we find that transcriptional expression of GABAAR subunits is anatomically organized according to their neurodevelopmental origin. The data show a combination of complementary and mutually-exclusive expression patterns that delineate major isoforms, and which is highly stereotypical across brains from control donors. We summarize the region-specific signature of GABAR subunits per subject and its variability in a control population sample that can be used as a reference for remodeling changes during homeostatic rearrangements of GABAAR subunits after physiological, pharmacological or pathological challenges.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA USA
| | - Kevin Shen
- Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX USA
| | - Assaf Gottlieb
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Agenor Limon
- Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
16
|
Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. Proc Natl Acad Sci U S A 2018; 115:E9926-E9933. [PMID: 30275331 PMCID: PMC6196516 DOI: 10.1073/pnas.1809050115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An intriguing feature of the nervous system is its plasticity—the remarkable lifelong capacity to change and adapt in light of intrinsic and extrinsic stimuli. Among the many different adaptive mechanisms that occur within the nervous system, changes in neurotransmission form an important plasticity-bestowing mechanism in the reconfiguration of neuronal circuits. Here, we reveal that physical activity and spinal cord injury can switch the neurotransmitter phenotype of the fast axial motoneurons to coexpress glutamate. Furthermore, our study shows that the adult vertebrate spinal motoneurons corelease glutamate alongside ACh in neuromuscular junctions to regulate motor behaviors. Thus, our findings suggest that fast motoneuron glutamatergic respecification enables a motor function-enhancing mechanism in vertebrates. A particularly essential determinant of a neuron’s functionality is its neurotransmitter phenotype. While the prevailing view is that neurotransmitter phenotypes are fixed and determined early during development, a growing body of evidence suggests that neurons retain the ability to switch between different neurotransmitters. However, such changes are considered unlikely in motoneurons due to their crucial functional role in animals’ behavior. Here we describe the expression and dynamics of glutamatergic neurotransmission in the adult zebrafish spinal motoneuron circuit assembly. We demonstrate that part of the fast motoneurons retain the ability to switch their neurotransmitter phenotype under physiological (exercise/training) and pathophysiological (spinal cord injury) conditions to corelease glutamate in the neuromuscular junctions to enhance animals’ motor output. Our findings suggest that motoneuron neurotransmitter switching is an important plasticity-bestowing mechanism in the reconfiguration of spinal circuits that control movements.
Collapse
|
17
|
Fabbiani G, Rehermann MI, Aldecosea C, Trujillo-Cenóz O, Russo RE. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles. Front Neural Circuits 2018; 12:20. [PMID: 29593503 PMCID: PMC5859367 DOI: 10.3389/fncir.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.
Collapse
Affiliation(s)
- Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María I Rehermann
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Carina Aldecosea
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Raúl E Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
18
|
Photoperiod-Induced Neuroplasticity in the Circadian System. Neural Plast 2018; 2018:5147585. [PMID: 29681926 PMCID: PMC5851158 DOI: 10.1155/2018/5147585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Seasonal changes in light exposure have profound effects on behavioral and physiological functions in many species, including effects on mood and cognitive function in humans. The mammalian brain's master circadian clock, the suprachiasmatic nucleus (SCN), transmits information about external light conditions to other brain regions, including some implicated in mood and cognition. Although the detailed mechanisms are not yet known, the SCN undergoes highly plastic changes at the cellular and network levels under different light conditions. We therefore propose that the SCN may be an essential mediator of the effects of seasonal changes of day length on mental health. In this review, we explore various forms of neuroplasticity that occur in the SCN and other brain regions to facilitate seasonal adaptation, particularly altered phase distribution of cellular circadian oscillators in the SCN and changes in hypothalamic neurotransmitter expression.
Collapse
|
19
|
HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function. Brain Behav Immun 2017; 65:210-221. [PMID: 28495611 PMCID: PMC5537017 DOI: 10.1016/j.bbi.2017.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for methamphetamine abuse in individuals with HIV.
Collapse
|
20
|
Dulcis D, Lippi G, Stark CJ, Do LH, Berg DK, Spitzer NC. Neurotransmitter Switching Regulated by miRNAs Controls Changes in Social Preference. Neuron 2017; 95:1319-1333.e5. [PMID: 28867550 PMCID: PMC5893310 DOI: 10.1016/j.neuron.2017.08.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023]
Abstract
Changes in social preference of amphibian larvae result from sustained exposure to kinship odorants. To understand the molecular and cellular mechanisms of this neuroplasticity, we investigated the effects of olfactory system activation on neurotransmitter (NT) expression in accessory olfactory bulb (AOB) interneurons during development. We show that protracted exposure to kin or non-kin odorants changes the number of dopamine (DA)- or gamma aminobutyric acid (GABA)-expressing neurons, with corresponding changes in attraction/aversion behavior. Changing the relative number of dopaminergic and GABAergic AOB interneurons or locally introducing DA or GABA receptor antagonists alters kinship preference. We then isolate AOB microRNAs (miRs) differentially regulated across these conditions. Inhibition of miR-375 and miR-200b reveals that they target Pax6 and Bcl11b to regulate the dopaminergic and GABAergic phenotypes. The results illuminate the role of NT switching governing experience-dependent social preference. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA.
| | - Giordano Lippi
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA
| | - Christiana J Stark
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Long H Do
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093-0649, USA
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA
| |
Collapse
|
21
|
The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers. J Chem Neuroanat 2015; 73:9-20. [PMID: 26703784 DOI: 10.1016/j.jchemneu.2015.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/09/2023]
Abstract
The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.
Collapse
|
22
|
Münster-Wandowski A, Gómez-Lira G, Gutiérrez R. Mixed neurotransmission in the hippocampal mossy fibers. Front Cell Neurosci 2013; 7:210. [PMID: 24319410 PMCID: PMC3837298 DOI: 10.3389/fncel.2013.00210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023] Open
Abstract
The hippocampal mossy fibers (MFs), the axons of the granule cells (GCs) of the dentate gyrus, innervate mossy cells and interneurons in the hilus on their way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient up-regulation of the machinery for the synthesis and release of GABA in the glutamatergic GCs. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data are consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.
Collapse
|
23
|
Hao MM, Bornstein JC, Young HM. Development of myenteric cholinergic neurons inChAT-Cre;R26R-YFPmice. J Comp Neurol 2013; 521:3358-70. [DOI: 10.1002/cne.23354] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Marlene M. Hao
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne; Australia; 3010
| | - Joel C. Bornstein
- Department of Physiology; University of Melbourne; Melbourne; Australia; 3010
| | - Heather M. Young
- Department of Anatomy and Neuroscience; University of Melbourne; Melbourne; Australia; 3010
| |
Collapse
|
24
|
Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. Neurotransmitter switching in the adult brain regulates behavior. Science 2013; 340:449-53. [PMID: 23620046 DOI: 10.1126/science.1234152] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurotransmitters have been thought to be fixed throughout life, but whether sensory stimuli alter behaviorally relevant transmitter expression in the mature brain is unknown. We found that populations of interneurons in the adult rat hypothalamus switched between dopamine and somatostatin expression in response to exposure to short- and long-day photoperiods. Changes in postsynaptic dopamine receptor expression matched changes in presynaptic dopamine, whereas somatostatin receptor expression remained constant. Pharmacological blockade or ablation of these dopaminergic neurons led to anxious and depressed behavior, phenocopying performance after exposure to the long-day photoperiod. Induction of newly dopaminergic neurons through exposure to the short-day photoperiod rescued the behavioral consequences of lesions. Natural stimulation of other sensory modalities may cause changes in transmitter expression that regulate different behaviors.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, University of California-San Diego, La Jolla, CA 92093-0357, USA.
| | | | | | | |
Collapse
|
25
|
Changes in brainstem serotonergic and dopaminergic cell populations in experimental and clinical Huntington's disease. Neuroscience 2013; 238:71-81. [PMID: 23403175 DOI: 10.1016/j.neuroscience.2013.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/20/2013] [Accepted: 01/27/2013] [Indexed: 12/14/2022]
Abstract
The predominant motor symptom in Huntington's disease (HD) is chorea. The patho-anatomical basis for the chorea is not well known, but a link with the dopaminergic system has been suggested by post-mortem and clinical studies. Our previous work revealed an increased number of dopamine-containing cells in the substantia nigra and ventral tegmental area in a transgenic rat model of HD (tgHD). Since there were no changes in the total number of cells in those regions, we hypothesized that changes in cell phenotype were taking place. Here, we tested this hypothesis by studying the dorsal raphe nucleus (DRN), which houses dopaminergic and non-dopaminergic (mainly serotonergic) neurons in tgHD rat tissue and postmortem HD human tissue. We found an increased number of dopamine and reduced number of serotonin-containing cells in the DRN of tgHD rats. Similar findings in postmortem HD brain tissue indicate that these changes also occur in patients. Further investigations in the tgHD animal tissue revealed the presence of dopaminergic cell bodies in the B6 raphe region, while in control animals exclusively serotonin-containing cells were found. These data suggest the existence of phenotype changes in monoaminergic neurons in the DRN in HD and shed new light on the neurobiology of clinical neurological symptoms such as chorea and mood changes.
Collapse
|
26
|
Zhang G, Gao Z, Guan S, Zhu Y, Wang JH. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs. Mol Brain 2013; 6:2. [PMID: 23286328 PMCID: PMC3548736 DOI: 10.1186/1756-6606-6-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/28/2012] [Indexed: 11/10/2022] Open
Abstract
Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.
Collapse
Affiliation(s)
- Guanjun Zhang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui Province 233000, China
| | | | | | | | | |
Collapse
|
27
|
Lara E, Beltrán JQ, Segovia J, Gutiérrez R. Granule cells born in the adult rat hippocampus can regulate the expression of GABAergic markers. Exp Neurol 2012; 237:134-41. [PMID: 22750325 PMCID: PMC11298776 DOI: 10.1016/j.expneurol.2012.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022]
Abstract
The granule cells (GCs) of the dentate gyrus transiently express markers of the GABAergic phenotype early during development. However, GCs are generated throughout life, posing the question of whether the newborn neurons in the adult rodent recapitulate the development of the neurotransmitter phenotype of GCs generated during embryonic and early postnatal development. In this work we asked whether newborn GCs transiently express a GABAergic phenotype during their development in the adult rat. Using retroviral infection, we labeled dividing cells in the dorsal hippocampus with GFP, identified them as granule cells, and determined their expression of GABAergic markers at different developmental stages. We found that GFP-positive cells express Prox-1 and calbindin, identifying them as GCs. GABA or GAD(67) was expressed in 13% of GFP-positive cells at 7 dpi, in 16% at 10 dpi and in 20% at 15 dpi. At 30 dpi, however, no GFP-positive cell somata containing GABAergic markers were detected, but their mossy fiber boutons did contain GAD(67). Interestingly, developing GCs detected with doublecortin and PSA-NCAM in non-injected adult rats, did not express GABAergic markers, suggesting that retroviral injection/infection stimulates their transient expression. However, in non-injected rats, a number of mossy fiber boutons of newborn granule cells detected with PSA-NCAM did express GAD(67). Our findings reveal that developing GCs born in the adult are able to transiently up-regulate the expression of GABAergic markers to be detected in their soma in response to insults, while they constitutively express GAD(67) in their mossy fibers.
Collapse
Affiliation(s)
- Erika Lara
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Mexico 07000 D.F., Mexico
- Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Mexico D.F. 14330, Mexico
| | - Jesús Q. Beltrán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Mexico 07000 D.F., Mexico
- Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Mexico D.F. 14330, Mexico
| | - José Segovia
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Mexico 07000 D.F., Mexico
| | - Rafael Gutiérrez
- Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Mexico D.F. 14330, Mexico
| |
Collapse
|
28
|
Demarque M, Spitzer NC. Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol 2012; 72:22-32. [PMID: 21557513 DOI: 10.1002/dneu.20909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmitter phenotype of a neuron has long been thought to be stable for the lifespan. Much as eyes have one color and do not change it over time, neurons have been thought to have one neurotransmitter and retain it for their lifetime. Both principles, exclusivity and stability, are challenged by recent data. More and more neurons in different regions of the brain appear to coexpress two or more neurotransmitters. Moreover, the profile of neurotransmitter expression of a given neuron has been shown to change over time, both during development and in response to changes in activity. The present review summarizes recent studies of this neurotransmitter phenotype plasticity (NPP). Homeostatic mechanisms of plasticity are aimed at maintaining the system within a functional range. They appear to be critical for optimal network operations and have been thought to operate largely by regulating intrinsic excitability, synapse number and synaptic strength. NPP provides a new and unexpected level of regulation of network homeostasis. We propose that it provides the basis for NT coexpression and discuss emerging issues and new questions for further studies in coming years.
Collapse
Affiliation(s)
- Michaël Demarque
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
29
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|