1
|
Martínez-Mármol R, Muhaisen A, Cotrufo T, Roselló-Busquets C, Ros O, Hernaiz-Llorens M, Pérez-Branguli F, Andrés RM, Parcerisas A, Pascual M, Ulloa F, Soriano E. Syntaxin-1 is necessary for UNC5A-C/Netrin-1-dependent macropinocytosis and chemorepulsion. Front Mol Neurosci 2023; 16:1253954. [PMID: 37829513 PMCID: PMC10565356 DOI: 10.3389/fnmol.2023.1253954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Brain connectivity requires correct axonal guidance to drive axons to their appropriate targets. This process is orchestrated by guidance cues that exert attraction or repulsion to developing axons. However, the intricacies of the cellular machinery responsible for the correct response of growth cones are just being unveiled. Netrin-1 is a bifunctional molecule involved in axon pathfinding and cell migration that induces repulsion during postnatal cerebellar development. This process is mediated by UNC5 homolog receptors located on external granule layer (EGL) tracts. Methods Biochemical, imaging and cell biology techniques, as well as syntaxin-1A/B (Stx1A/B) knock-out mice were used in primary cultures and brain explants. Results and discussion Here, we demonstrate that this response is characterized by enhanced membrane internalization through macropinocytosis, but not clathrin-mediated endocytosis. We show that UNC5A, UNC5B, and UNC5C receptors form a protein complex with the t-SNARE syntaxin-1. By combining botulinum neurotoxins, an shRNA knock-down strategy and Stx1 knock-out mice, we demonstrate that this SNARE protein is required for Netrin1-induced macropinocytosis and chemorepulsion, suggesting that Stx1 is crucial in regulating Netrin-1-mediated axonal guidance.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Francesc Pérez-Branguli
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Rosa Maria Andrés
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Vic, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineerings, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Sasao M, Uno T, Kitagawa R, Matsui A, Toryu F, Mizoguchi A, Kanamaru K, Sakamoto K, Uno Y. Localization of SNARE proteins in the brain and corpus allatum of Bombyx mori. Histochem Cell Biol 2023; 159:199-208. [PMID: 36129568 DOI: 10.1007/s00418-022-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.
Collapse
Affiliation(s)
- Mako Sasao
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Risa Kitagawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Asuka Matsui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Fumika Toryu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, 470-0195, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Katsuhiko Sakamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
3
|
Vadisiute A, Meijer E, Szabó F, Hoerder-Suabedissen A, Kawashita E, Hayashi S, Molnár Z. The role of snare proteins in cortical development. Dev Neurobiol 2022; 82:457-475. [PMID: 35724379 PMCID: PMC9539872 DOI: 10.1002/dneu.22892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Eri Kawashita
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
FEZ1 Forms Complexes with CRMP1 and DCC to Regulate Axon and Dendrite Development. eNeuro 2021; 8:ENEURO.0193-20.2021. [PMID: 33771901 PMCID: PMC8174033 DOI: 10.1523/eneuro.0193-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Elaboration of neuronal processes is an early step in neuronal development. Guidance cues must work closely with intracellular trafficking pathways to direct expanding axons and dendrites to their target neurons during the formation of neuronal networks. However, how such coordination is achieved remains incompletely understood. Here, we characterize an interaction between fasciculation and elongation protein zeta 1 (FEZ1), an adapter involved in synaptic protein transport, and collapsin response mediator protein (CRMP)1, a protein that functions in growth cone guidance, at neuronal growth cones. We show that similar to CRMP1 loss-of-function mutants, FEZ1 deficiency in rat hippocampal neurons causes growth cone collapse and impairs axonal development. Strikingly, FEZ1-deficient neurons also exhibited a reduction in dendritic complexity stronger than that observed in CRMP1-deficient neurons, suggesting that the former could partake in additional developmental signaling pathways. Supporting this, FEZ1 colocalizes with VAMP2 in developing hippocampal neurons and forms a separate complex with deleted in colorectal cancer (DCC) and Syntaxin-1 (Stx1), components of the Netrin-1 signaling pathway that are also involved in regulating axon and dendrite development. Significantly, developing axons and dendrites of FEZ1-deficient neurons fail to respond to Netrin-1 or Netrin-1 and Sema3A treatment, respectively. Taken together, these findings highlight the importance of FEZ1 as a common effector to integrate guidance signaling pathways with intracellular trafficking to mediate axo-dendrite development during neuronal network formation.
Collapse
|
5
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Sun W, Tian BX, Wang SH, Liu PJ, Wang YC. The function of SEC22B and its role in human diseases. Cytoskeleton (Hoboken) 2020; 77:303-312. [PMID: 32748571 DOI: 10.1002/cm.21628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are a large protein complex that is involved in the membrane fusion in vesicle trafficking, cell growth, cytokinesis, membrane repair, and synaptic transmission. As one of the SNARE proteins, SEC22B functions in membrane fusion of vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus, antigen cross-presentation, secretory autophagy, and other biological processes. However, apart from not being SNARE proteins, there is little knowledge known about its two homologs (SEC22A and SEC22C). SEC22B alterations have been reported in many human diseases, especially, many mutations of SEC22B in human cancers have been detected. In this review, we will introduce the specific functions of SEC22B, and summarize the researches about SEC22B in human cancers and other diseases. These findings have laid the foundation for further studies to clarify the exact mechanism of SEC22B in the pathological process and to seek new therapeutic targets and better treatment strategies.
Collapse
Affiliation(s)
- Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Bi-Xia Tian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Hong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yao-Chun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
IGARASHI M. Molecular basis of the functions of the mammalian neuronal growth cone revealed using new methods. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:358-377. [PMID: 31406059 PMCID: PMC6766448 DOI: 10.2183/pjab.95.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 05/25/2023]
Abstract
The neuronal growth cone is a highly motile, specialized structure for extending neuronal processes. This structure is essential for nerve growth, axon pathfinding, and accurate synaptogenesis. Growth cones are important not only during development but also for plasticity-dependent synaptogenesis and neuronal circuit rearrangement following neural injury in the mature brain. However, the molecular details of mammalian growth cone function are poorly understood. This review examines molecular findings on the function of the growth cone as a result of the introduction of novel methods such superresolution microscopy and (phospho)proteomics. These results increase the scope of our understating of the molecular mechanisms of growth cone behavior in the mammalian brain.
Collapse
Affiliation(s)
- Michihiro IGARASHI
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Fuschini G, Cotrufo T, Ros O, Muhaisen A, Andrés R, Comella JX, Soriano E. Syntaxin-1/TI-VAMP SNAREs interact with Trk receptors and are required for neurotrophin-dependent outgrowth. Oncotarget 2018; 9:35922-35940. [PMID: 30542508 PMCID: PMC6267591 DOI: 10.18632/oncotarget.26307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
SNARE proteins are essential components of the machinery that regulates vesicle trafficking and exocytosis. Their role is critical for the membrane-fusion processes that occur during neurotransmitter release. However, research in the last decade has also unraveled the relevance of these proteins in membrane expansion and cytoskeletal rearrangements during developmental processes such as neuronal migration and growth cone extension and attraction. Neurotrophins are neurotrophic factors that are required for many cellular functions throughout the brain, including neurite outgrowth and guidance, synaptic formation, and plasticity. Here we show that neurotrophin Trk receptors form a specific protein complex with the t-SNARE protein Syntaxin 1, both in vivo and in vitro. We also demonstrate that blockade of Syntaxin 1 abolishes neurotrophin-dependent growth of axons in neuronal cultures and decreases exocytotic events at the tip of axonal growth cones. 25-kDa soluble N-ethylmaleimide-sensitive factor attachment protein and Vesicle-associated membrane protein 2 do not participate in the formation of this SNARE complex, while tetanus neurotoxin-insensitive vesicle-associated membrane protein interacts with Trk receptors; knockdown of this (v) SNARE impairs Trk-dependent outgrowth. Taken together, our results support the notion that an atypical SNARE complex comprising Syntaxin 1 and tetanus neurotoxin-insensitive vesicle-associated membrane protein is required for axonal neurotrophin function.
Collapse
Affiliation(s)
- Giulia Fuschini
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Rosa Andrés
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Joan X. Comella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
9
|
Ros O, Barrecheguren PJ, Cotrufo T, Schaettin M, Roselló-Busquets C, Vílchez-Acosta A, Hernaiz-Llorens M, Martínez-Marmol R, Ulloa F, Stoeckli ET, Araújo SJ, Soriano E. A conserved role for Syntaxin-1 in pre- and post-commissural midline axonal guidance in fly, chick, and mouse. PLoS Genet 2018; 14:e1007432. [PMID: 29912942 PMCID: PMC6029812 DOI: 10.1371/journal.pgen.1007432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 07/03/2018] [Accepted: 05/18/2018] [Indexed: 02/03/2023] Open
Abstract
Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms. Syntaxin-1 is a core factor in tethering synaptic vesicles and mediating their fusion to the cell membrane at the synapse. Thus, Syntaxin-1 mediates neurotransmission in the adult nervous system. Here we show that this protein is also involved in axonal guidance in the CNS of vertebrates and invertebrates during the development of the nervous system: our systematic analysis of the phenotypes in the nervous system midline of fly, chick, and mouse embryos mutant for Syntaxin-1 unveils an evolutionarily conserved role for this protein in midline axonal guidance. Further, we also dissect the contribution of other proteins regulating neuronal exocytosis in axonal development. We propose that the coupling of the guidance molecule machinery to proteins that regulate exocytosis is a general mechanism linking chemotropism to axonal growth.
Collapse
Affiliation(s)
- Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Pablo José Barrecheguren
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Martina Schaettin
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alba Vílchez-Acosta
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ramón Martínez-Marmol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- * E-mail: (ETS); (SJA); (ES)
| | - Sofia J. Araújo
- Institut de Recerca Biomedica de Barcelona (IRB Barcelona), Parc Cientific de Barcelona, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail: (ETS); (SJA); (ES)
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Vall d´Hebron Institute of Research (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (ETS); (SJA); (ES)
| |
Collapse
|
10
|
Ulloa F, Cotrufo T, Ricolo D, Soriano E, Araújo SJ. SNARE complex in axonal guidance and neuroregeneration. Neural Regen Res 2018; 13:386-392. [PMID: 29623913 PMCID: PMC5900491 DOI: 10.4103/1673-5374.228710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary for the optimal performance of the nervous system in all organisms. Damage to these networks can be repaired by neuroregenerative processes which in turn can re-establish synapses between injured axons and postsynaptic terminals. Both axonal growth and guidance and the neuroregenerative response rely on correct axonal growth and growth cone responses to guidance cues as well as correct synapses with appropriate targets. With this in mind, parallels can be drawn between axonal regeneration and processes occurring during embryonic nervous system development. However, when studying parallels between axonal development and regeneration many questions still arise; mainly, how do axons grow and synapse with their targets and how do they repair their membranes, grow and orchestrate regenerative responses after injury. Major players in the cellular and molecular processes that lead to growth cone development and movement during embryonic development are the Soluble N-ethylamaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) proteins, which have been shown to be involved in axonal growth and guidance. Their involvement in axonal growth, guidance and neuroregeneration is of foremost importance, due to their roles in vesicle and membrane trafficking events. Here, we review the recent literature on the involvement of SNARE proteins in axonal growth and guidance during embryonic development and neuroregeneration.
Collapse
Affiliation(s)
- Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Delia Ricolo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid; Vall d´Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|