1
|
Thomas A, Walpurgis K, Naumann N, Piper T, Thevis M. Bioanalytical methods in doping controls: a review. Bioanalysis 2025; 17:359-370. [PMID: 39916648 PMCID: PMC11875490 DOI: 10.1080/17576180.2025.2460951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025] Open
Abstract
The analytical and technological approaches employed in doping analysis are constantly reviewed and updated to allow for keeping pace with progresses in pharmaceutical and medicinal research and the therein inherent options of misuse as performance enhancing drugs or methods. Enormous changes, improvements, and developments have been achieved in recent years, particularly, but not exclusively, in the bioanalytical sector. Several of these new strategies are examined systematically in this review using examples from the World Anti-Doping Agency (WADA) list of banned substances and methods. The review includes, among others, the application of sophisticated new in-vitro models mimicking multi compartment models, investigation into new long-term metabolites for anabolic agents, the impact of a distinct gene mutation on the analysis of erythropoietin, studies on the development of new therapeutic protein-based drugs with myostatin inhibiting properties, methods applying the new molecular biological section used to uncover gene doping, and finally new approaches uncovering the prohibited use of autologous blood transfusion. All of these challenges and investigations support the ongoing progress in modern doping controls in the future and will help to fill the gap between the advance of cheating athletes and sport drug testing.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Nana Naumann
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Thomas Piper
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
2
|
Loria F, Breenfeldt Andersen A, Bejder J, Bonne T, Grabherr S, Kuuranne T, Leuenberger N, Baastrup Nordsborg N. mRNA biomarkers sensitive and specific to micro-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2024; 16:1392-1401. [PMID: 38382494 DOI: 10.1002/dta.3665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Recombinant human erythropoietin (rhEPO) is prohibited by the World Anti-Doping Agency. rhEPO abuse can be indirectly detected via the athlete biological passport (ABP). However, altitude exposure challenges interpretation of the ABP. This study investigated whether 5'-aminolevulinate synthase 2 (ALAS2) and carbonic anhydrase 1 (CA1) in capillary dried blood spots (DBSs) are sensitive and specific markers of rhEPO treatment at altitude. ALAS2 and CA1 expression was monitored in DBS collected weekly before, during, and after a 3-week period at sea level or altitude. Participants were randomly assigned to receive 20 IU kg bw-1 epoetin alpha (rhEPO) or placebo injections every second day for 3 weeks while staying at sea level (rhEPO, n = 25; placebo, n = 9) or altitude (rhEPO, n = 12; placebo, n = 27). ALAS2 and CA1 expression increased up to 300% and 200%, respectively, upon rhEPO treatment at sea-level and altitude (P-values <0.05). When a blinded investigator interpreted the results, ALAS2 and CA1 expression had a sensitivity of 92%. Altitude did not confound the interpretation. Altitude affected ALAS2 and CA1 expression less than actual ABP markers when compared between sea level and altitude results. An individual athlete passport-like approach simulation confirmed the biomarker potential of ALAS2 and CA1. ALAS2 and CA1 were sensitive and specific biomarkers of micro-dose rhEPO treatment at sea level and altitude. Altitude seemed less a confounding factor for these biomarkers, especially when they are combined. Thus, micro-dose rhEPO injections can be detected in a longitudinal blinded setting using mRNA biomarkers in DBS.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Andreas Breenfeldt Andersen
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Silke Grabherr
- University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Loup B, André F, Leuenberger N, Marchand A, Barnabé A, Delcourt V, Garcia P, Popot MA, Bailly-Chouriberry L. New Transcriptomic Biomarkers for Detection of the Recombinant Human Erythropoietin (rHuEPO) MirCERA in Horses. Drug Test Anal 2024. [PMID: 39321850 DOI: 10.1002/dta.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Detection and monitoring of biomarkers related to doping is particularly suitable for the development of analytical strategies dedicated to indirect detection of banned substances. Previous studies in horses have already allowed the investigation of transcriptomic biomarkers in equine blood associated with reGH and rHuEPO administrations. Our most recent developments continue to focus on the discovery and monitoring of transcriptomic biomarkers for the control of ESAs, and a collaborative study with WADA-accredited doping control laboratories has recently been initiated to conduct a pilot study. In humans, three mRNAs (ALAS2, CA1, and SLC4A1) were previously observed to be differentially expressed after blood doping and were associated with immature red blood cells, the so-called circulating reticulocytes. In horses, circulating reticulocytes are rarely observed even after rHuEPO administration. With the improved primers that detect the equine orthologues of the human mRNAs from the ALAS2, CA1, and SLC4A1 genes, we can now report the first evidence of the detection of the three biomarkers in equine blood. In addition, an upregulation of the mRNA levels of the three genes was observed after analysis of blood samples collected from MirCERA-treated animals, with kinetics similar to those previously documented in humans. Our data suggest that ALAS2 and CA1 are promising indirect biomarkers for the detection of recombinant EPO abuse in horses, as observed in humans.
Collapse
Affiliation(s)
- Benoit Loup
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - François André
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Marchand
- Laboratoire antidopage français (LADF), Université Paris-Saclay, Orsay, France
| | - Agnès Barnabé
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Vivian Delcourt
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Patrice Garcia
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Marie-Agnès Popot
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | | |
Collapse
|
4
|
Oliveira JA, Loria F, Schobinger C, Kuuranne T, Mumenthaler C, Leuenberger N. Comparison between standard hematological parameters and blood doping biomarkers in dried blood spots within the athlete population of Swiss Sport Integrity. Front Sports Act Living 2024; 6:1452079. [PMID: 39364095 PMCID: PMC11446872 DOI: 10.3389/fspor.2024.1452079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction The study demonstrated the feasibility of incorporating RNA biomarkers, specifically 5-aminolevulinic acid synthase (ALAS2) and carbonic anhydrase 1 (CA1), to improve the hematological module of the Athlete Biological Passport (ABP) in routine antidoping context. Objective The aim was to investigate the implementation of reticulocyte (RET) related biomarkers, specifically ALAS2 and CA1, using quantitative reverse transcription polymerase chain reaction (RT-qPCR) on dried blood spots (DBS) from elite athletes. Hemoglobin changes over time in DBS samples was measured as well. Combining hemoglobin and messenger RNA (mRNA) analyses allowed to monitor alterations of the established marker, "DBS OFF-score". Methodology Ten athletes were selected for sampling by the Swiss national antidoping organization, Swiss Sports Integrity (SSI). Samples were collected, transported and analyzed for ABP following the World Anti-Doping Agency (WADA) procedures and spotted onto Protein Saver DBS cards. Results Most athletes exhibited stable biomarker levels, except for one individual involved in ski mountaineering, who demonstrated a sustained increase in ALAS2 compared to the individual baseline. This elevation could be due to blood withdrawal or other factors, such as doping with substances outside the targeted test menu. Conclusion In this study, RNA-biomarkers were successfully analyzed in routine blood samples, and the project demonstrated promising results for the implementation of ALAS2 and CA1 in routine analysis to complement the ABP.
Collapse
Affiliation(s)
- Jessica Almeida Oliveira
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Céline Schobinger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Loria F, Grabherr S, Kuuranne T, Leuenberger N. Use of RNA biomarkers in the antidoping field. Bioanalysis 2024; 16:475-484. [PMID: 38497758 PMCID: PMC11216508 DOI: 10.4155/bio-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
There is growing evidence that various RNA molecules can serve as biomarkers for clinical diagnoses. Over the last decade, the high specificities and sensitivities of RNA biomarkers have led to proposals that they could be used to detect prohibited substances and practices in sports. mRNAs and circulating miRNAs have the potential to improve the detection of doping and expand the performance of the Athlete Biological Passport. This review provides a summary of the use of RNA biomarkers to detect human and equine doping practices, including a discussion of the use of dried blood spots as a stable matrix that supports and improves the general process of RNA biomarker detection. The advantages of RNA biomarkers over protein biomarkers are also discussed.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| | - Silke Grabherr
- University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, 1000, Switzerland
| |
Collapse
|
6
|
Dragčević D, Pandžić Jakšić V, Jakšić O. Athlete biological passport: longitudinal biomarkers and statistics in the fight against doping. Arh Hig Rada Toksikol 2024; 75:24-31. [PMID: 38548376 PMCID: PMC10978099 DOI: 10.2478/aiht-2024-75-3793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/01/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
As novel substances, short time windows, and limits of detection increasingly challenge direct methods of doping detection in sports, indirect tools inevitably take a greater role in the fight against it. One such tool is the athlete biological passport (ABP) - a longitudinal profiling of the measured haematological and biochemical biomarkers, combined with calculated scores, against the background of epidemiological data crucial for doping detection. In both of its modules, haematological and steroidal, ABP parameters are analysed with the Bayesian adaptive model, which individualises reference and cut-off values to improve its sensitivity. It takes into account the confounding factors with proven and potential influence on the biomarkers, such as race and altitude exposure. The ABP has already changed the fight against doping, but its importance will further grow with the new modules (e.g., endocrinological), parameters (e.g., plasma volume-independent parameters), and complementing indirect methods (e.g., transcriptomic).
Collapse
Affiliation(s)
- Dora Dragčević
- University Hospital Merkur, Department of Haematology, Zagreb, Croatia
| | - Vlatka Pandžić Jakšić
- University Hospital Dubrava, Department of Endocrinology, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ozren Jakšić
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Dubrava, Department of Haematology, Zagreb, Croatia
| |
Collapse
|
7
|
Krumm B, Saugy JJ, Botrè F, Donati F, Faiss R. Indirect biomarkers of blood doping: A systematic review. Drug Test Anal 2024; 16:49-64. [PMID: 37160638 DOI: 10.1002/dta.3514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The detection of blood doping represents a current major issue in sports and an ongoing challenge for antidoping research. Initially focusing on direct detection methods to identify a banned substance or its metabolites, the antidoping effort has been progressively complemented by indirect approaches. The longitudinal and individual monitoring of specific biomarkers aims to identify nonphysiological variations that may be related to doping practices. From this perspective, the identification of markers sensitive to erythropoiesis alteration is key in the screening of blood doping. The current Athlete Biological Passport implemented since 2009 is composed of 14 variables (including two primary markers, i.e., hemoglobin concentration and OFF score) for the hematological module to be used for indirect detection of blood doping. Nevertheless, research has continually proposed and investigated new markers sensitive to an alteration of the erythropoietic cascade and specific to blood doping. If multiple early markers have been identified (at the transcriptomic level) or developed directly in a diagnostics' kit (at a proteomic level), other target variables at the end of the erythropoietic process (linked with the red blood cell functions) may strengthen the hematological module in the future. Therefore, this review aims to provide a global systematic overview of the biomarkers considered to date in the indirect investigation of blood doping.
Collapse
Affiliation(s)
- Bastien Krumm
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas J Saugy
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Raphael Faiss
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Dragcevic D, Jaksic O. Blood doping — physiological background, substances and techniques used, current and future detection methods. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Solheim SA, Levernaes MCS, Mørkeberg J, Juul A, Upners EN, Nordsborg NB, Dehnes Y. Stability and detectability of testosterone esters in dried blood spots after intramuscular injections. Drug Test Anal 2022; 14:1926-1937. [PMID: 33733610 DOI: 10.1002/dta.3030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
While misuse of testosterone esters is widespread in elite and recreational sports, direct detection of intact testosterone esters in doping control samples is hampered by the rapid hydrolysis by esterases present in the blood. With dried blood spot (DBS) as sample matrix, continued degradation of the esters is avoided due to inactivation of the hydrolase enzymes in dried blood. Here, we have developed the method further for detection of testosterone esters in DBS with focus on robustness and applicability in doping control. To demonstrate the method's feasibility, DBS samples from men receiving two intramuscular injections of Sustanon® 250 (n = 9) or placebo (n = 10) were collected, transported, and stored prior to analysis, to mimic a doping control scenario. The presented nanoLC-HRMS/MS method appeared reliable and suitable for direct detection of four testosterone esters (testosterone decanoate, isocaproate, phenylpropionate, and propionate) after extraction from DBS. Sustanon® was detected in all subjects for at least 5 days, with detection window up to 14 days for three of the esters. Evaluation of analyte stability showed that while storage at room temperature is tolerated well for a few days, testosterone esters are highly stable (>18 months) in DBS when stored in frozen conditions. Collectively, these findings demonstrate the applicability of DBS sampling in doping control for detection of steroid esters. The fast collection and reduced shipment costs of DBS compared with urine and standard blood samples, respectively, will allow more frequent and/or large-scale testing to increase detection and deterrence.
Collapse
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Science and Research, Anti-Doping Denmark, Brøndby, Denmark
| | | | | | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Emmie N Upners
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Zhang J, Zhang D, Zhao J. CFNAs of RBCs affect the release of inflammatory factors through the expression of CaMKIV in macrophages. Transfus Apher Sci 2022; 61:103494. [PMID: 35773126 DOI: 10.1016/j.transci.2022.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Blood transfusions reportedly modulate the recipient's immune system. Transfusion-related immunomodulation has been suggested as a mechanism of some adverse clinical outcomes. Extracellular nucleic acids circulate in plasma and activate relevant immune responses, but little is known about their mechanism of action in transfusion-related immunomodulation (TRIM). The aim of this study was to investigate the effects of cell-free nucleic acids (CFNAs) produced by red blood cells (RBCs) on innate immunity, especially peripheral blood mononuclear cells (PBMCs) and macrophages, and to investigate the mechanism of action. METHODS Differentially expressed genes (DEGs) between PBMCs exposed to RBC-produced CFNA and normal PBMCs were analyzed by gene expression data combined with bioinformatics. KEGG and GO enrichment analyses were performed for the DEGs, and in vitro experiments were performed for the effects of key genes on the release of inflammatory factors from macrophages. RESULTS Analysis of microarray data showed that exposure of monocytes to RBC-produced CFNAs increased the expression of genes involved in the innate immune response, including chemokines, chemokine receptors, and innate response receptors, and that calcium channel activity was highly regulated, with a key gene being CaMKIV. CaMKIV played a critical role in LPS-induced inflammatory factor release from macrophages, which was exacerbated by overexpression of the CaMKIV gene. CONCLUSION RBCs regulate the release of inflammatory factors during blood transfusion by releasing CFNAs and affecting expression of the CaMKIV gene in PBMCs or macrophages, which is a potential regulatory mechanism of blood transfusion-related immune regulation and related adverse reactions.
Collapse
Affiliation(s)
- Jingrui Zhang
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China.
| | - Dan Zhang
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Jing Zhao
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| |
Collapse
|
12
|
Untargeted Metabolomics Identifies a Novel Panel of Markers for Autologous Blood Transfusion. Metabolites 2022; 12:metabo12050425. [PMID: 35629929 PMCID: PMC9145416 DOI: 10.3390/metabo12050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Untargeted metabolomics was used to analyze serum and urine samples for biomarkers of autologous blood transfusion (ABT). Red blood cell concentrates from donated blood were stored for 35−36 days prior to reinfusion into the donors. Participants were sampled at different time points post-donation and up to 7 days post-transfusion. Metabolomic profiling was performed using ACQUITY ultra performance liquid chromatography (UPLC), Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The markers of ABT were determined by principal component analysis and metabolites that had p < 0.05 and met ≥ 2-fold change from baseline were selected. A total of 11 serum and eight urinary metabolites, including two urinary plasticizer metabolites, were altered during the study. By the seventh day post-transfusion, the plasticizers had returned to baseline, while changes in nine other metabolites (seven serum and two urinary) remained. Five of these metabolites (serum inosine, guanosine and sphinganine and urinary isocitrate and erythronate) were upregulated, while serum glycourdeoxycholate, S-allylcysteine, 17-alphahydroxypregnenalone 3 and Glutamine conjugate of C6H10O2 (2)* were downregulated. This is the first study to identify a panel of metabolites, from serum and urine, as markers of ABT. Once independently validated, it could be universally adopted to detect ABT.
Collapse
|
13
|
Monitoring of hemoglobin and erythropoiesis-related mRNA with dried blood spots in athletes and patients. Bioanalysis 2022; 14:241-251. [PMID: 35172618 DOI: 10.4155/bio-2021-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: We assessed the feasibility of using hematological parameters (such as hemoglobin and reticulocyte mRNA) in dried blood spot (DBS) samples to test athletes for doping and to improve patient care. Methods: Hemoglobin and erythropoiesis-related mRNAs were measured in venous blood and DBSs from both healthy athletes and hemodialysis patients. Results: We accurately measured hemoglobin changes over time in both venous blood and DBS samples. Combining hemoglobin and mRNA analyses, we detected erythropoietin injection in DBSs more sensitively and with higher efficiency by using the DBS OFF-score than by using the athlete biological passport OFF-score. Conclusion: DBS-based measurements are practical for calculating hemoglobin levels and athlete biological passport OFF-scores. This approach may help detect blood doping and help predict patient response to EPO.
Collapse
|
14
|
Loria F, Cox HD, Voss SC, Rocca A, Miller GD, Townsend N, Georgakopoulos C, Eichner D, Kuuranne T, Leuenberger N. The use of RNA-based 5'-aminolevulinate synthase 2 biomarkers in dried blood spots to detect recombinant human erythropoietin microdoses. Drug Test Anal 2021; 14:826-832. [PMID: 34216436 PMCID: PMC9545850 DOI: 10.1002/dta.3123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
The hematological module of the Athlete Biological Passport (ABP) is used for indirect detection of blood manipulations; however, the use of this method to detect doping, such as with microdoses of recombinant human erythropoietin (rhEPO), is problematic. For this reason, the sensitivity of ABP must be enhanced by implementing novel biomarkers. Here, we show that 5'-aminolevulinate synthase 2 (ALAS2) mRNAs are useful transcriptomic biomarkers to improve the indirect detection of rhEPO microdosing. Moreover, the sensitivity was sufficient to distinguish rhEPO administration from exposure to hypoxic conditions. Levels of mRNAs encoding carbonate anhydrase 1 (CA1) and solute carrier family 4 member 1 (SLC4A1) RNA, as well as the linear (L) and linear + circular (LC) forms of ALAS2 mRNA, were monitored for 16 days after rhEPO microdosing and during exposure to hypoxic conditions. ALAS2 mRNAs increased by 300% compared with the baseline values after rhEPO microdosing. Moreover, ALAS2 mRNAs were not significantly increased under hypoxic conditions. By contrast, CA1 mRNA was increased after both rhEPO microdosing and hypoxia, whereas SLC4A1 mRNA did not significantly increase under either condition. Furthermore, the analyses described here were performed using dried blood spots (DBSs), which provide advantages in terms of the sample collection, transport, and storage logistics. This study demonstrates that ALAS2 mRNA levels are sensitive and specific transcriptomic biomarkers for the detection of rhEPO microdosing using the hematological module of the ABP, and this method is compatible with the use of DBSs for anti-doping analyses.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | | | - Angela Rocca
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Nathan Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Doha, Qatar
| | | | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Jeppesen JS, Breenfeldt Andersen A, Bonne TC, Thomassen M, Sørensen H, Nordsborg NB, Olsen NV, Huertas JR, Bejder J. Immature reticulocytes are sensitive and specific to low-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2021; 13:1331-1340. [PMID: 33739618 DOI: 10.1002/dta.3031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
We investigated whether immature reticulocyte fraction (IRF) and immature reticulocytes to red blood cells ratio (IR/RBC) are sensitive biomarkers for low-dose recombinant human erythropoietin (rhEpo) treatment at sea level (SL) and moderate altitude (AL) and whether multi (FACS) or single (Sysmex-XN) fluorescence flow cytometry is superior for IRF and IR/RBC determination. Thirty-nine participants completed two interventions, each containing a 4-week baseline, a 4-week SL or AL (2,230 m) exposure, and a 4-week follow-up. During exposure, rhEpo (20 IU kg-1 ) or placebo (PLA) was injected at SL (SLrhEpo , n = 25, SLPLA n = 9) and AL (ALrhEpo , n = 12, ALPLA n = 27) every second day for 3 weeks. Venous blood was collected weekly. Sysmex measurements revealed that IRF and IR/RBC were up to ~70% (P < 0.01) and ~190% (P < 0.001) higher in SLrhEpo than SLPLA during treatment and up to ~45% (P < 0.001) and ~55% (P < 0.01) lower post-treatment, respectively. Compared with ALPLA , IRF and IR/RBC were up to ~20% (P < 0.05) and ~45% (P < 0.001) lower post-treatment in SLrhEpo , respectively. In ALrhEpo , IRF and IR/RBC were up to ~40% (P < 0.05) and ~110% (P < 0.001) higher during treatment and up to ~25% (P < 0.05) and ~40% (P < 0.05) lower post-treatment, respectively, compared with ALPLA . Calculated thresholds provided ~90% sensitivity for both biomarkers at SL and 33% (IRF) and 66% (IR/RBC) at AL. Specificity was >99%. Single-fluorescence flow cytometry coefficient of variation was >twofold higher at baseline (P < 0.001) and provided larger or similar changes compared to multi-fluorescence, albeit with smaller precision. In conclusion, IRF and IR/RBC were sensitive and specific biomarkers for low-dose rhEpo misuse at SL and AL.
Collapse
Affiliation(s)
- Jan Sommer Jeppesen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesús Rodríguez Huertas
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Solheim SA, Jessen S, Mørkeberg J, Thevis M, Dehnes Y, Eibye K, Hostrup M, Nordsborg NB. Single‐dose administration of clenbuterol is detectable in dried blood spots. Drug Test Anal 2020; 12:1366-1372. [DOI: 10.1002/dta.2872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Department of Sport Anti Doping Denmark Brøndby Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research German Sport University Cologne Cologne Germany
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Department of Pharmacology Oslo University Hospital Oslo Norway
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | |
Collapse
|
17
|
Automation of RNA-based biomarker extraction from dried blood spots for the detection of blood doping. Bioanalysis 2020; 12:729-736. [DOI: 10.4155/bio-2020-0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Transcriptomic biomarkers originating from reticulocytes measured in dried blood spots (DBSs) may be reliable indicators of blood doping. Methods/results: Here, we examined changes in the expression levels of the erythropoiesis-related ALAS2, CA1 and SLC4A1 genes in DBS samples from elite athletes and volunteers of clinical study with recombinant erythropoietin dose. Conclusion: By comparing the mean intraday coefficients of variation for ALAS2L, ALASLC, CA1 and SLC4A1 between manual and automated RNA extractions, an average improvement was observed, whereas the assessment of interday variability provided comparable results for both manual and automated approaches. Our results confirmed that RNA biomarkers on DBS support are efficient to detect blood doping.
Collapse
|
18
|
Atkinson TS, Kahn MJ. Blood doping: Then and now. A narrative review of the history, science and efficacy of blood doping in elite sport. Blood Rev 2020; 39:100632. [DOI: 10.1016/j.blre.2019.100632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
|
19
|
Cox HD. Dried Blood Spots May Improve Detection of Blood Doping. Clin Chem 2019; 65:1481-1483. [DOI: 10.1373/clinchem.2019.311902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT
| |
Collapse
|
20
|
Salamin O, Gottardo E, Schobinger C, Reverter-Branchat G, Segura J, Saugy M, Kuuranne T, Tissot JD, Favrat B, Leuenberger N. Detection of Stimulated Erythropoiesis by the RNA-Based 5'-Aminolevulinate Synthase 2 Biomarker in Dried Blood Spot Samples. Clin Chem 2019; 65:1563-1571. [DOI: 10.1373/clinchem.2019.306829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023]
Abstract
Abstract
BACKGROUND
Despite implementation of the Athlete Biological Passport 10 years ago, blood doping remains difficult to detect. Thus, there is a need for new biomarkers to increase the sensitivity of the adaptive model. Transcriptomic biomarkers originating from immature reticulocytes may be reliable indicators of blood manipulations. Furthermore, the use of dried blood spots (DBSs) for antidoping purposes constitutes a complementary approach to venous blood collection. Here, we developed a method of quantifying the RNA-based 5′-aminolevulinate synthase 2 (ALAS2) biomarker in DBS.
MATERIALS
The technical, interindividual, and intraindividual variabilities of the method, and the effects of storage conditions on the production levels of ALAS2 RNA were assessed. The method was used to monitor erythropoiesis stimulated endogenously (blood withdrawal) or exogenously (injection of recombinant human erythropoietin).
RESULTS
When measured over a 7-week period, the intra- and interindividual variabilities of ALAS2 expression in DBS were 12.5%–42.4% and 49%, respectively. Following withdrawal of 1 unit of blood, the ALAS2 RNA in DBS increased significantly for up to 15 days. Variations in the expression level of this biomarker in DBS samples were more marked than those of the conventional hematological parameters, reticulocyte percentage and immature reticulocyte fraction. After exogenous stimulation of erythropoiesis via recombinant human erythropoietin injection, ALAS2 expression in DBS increased by a mean 8-fold.
CONCLUSIONS
Monitoring of transcriptomic biomarkers in DBS could complement the measurement of hematological parameters in the Athlete Biological Passport and aid the detection of blood manipulations.
Collapse
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in Anti-Doping Sciences – REDs, University of Lausanne, Lausanne, Switzerland
| | - Emeric Gottardo
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Schobinger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gemma Reverter-Branchat
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jordi Segura
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
- Catalonian Antidoping Laboratory, Doping Control Research Group, Neurosciences Research Program, IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Martial Saugy
- Center of Research and Expertise in Anti-Doping Sciences – REDs, University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Cox HD, Miller GD, Lai A, Cushman D, Eichner D. Detection of autologous blood transfusions using a novel dried blood spot method. Drug Test Anal 2017; 9:1713-1720. [DOI: 10.1002/dta.2323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Holly D. Cox
- Sports Medicine Research and Testing Laboratory Salt Lake City UT USA 84108
| | - Geoffrey D. Miller
- Sports Medicine Research and Testing Laboratory Salt Lake City UT USA 84108
- University of Utah School of MedicineDivision of Physical Medicine and Rehabilitation Salt Lake City UT USA 84112
| | - Auriella Lai
- Sports Medicine Research and Testing Laboratory Salt Lake City UT USA 84108
| | - Dan Cushman
- University of Utah School of MedicineDivision of Physical Medicine and Rehabilitation Salt Lake City UT USA 84112
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory Salt Lake City UT USA 84108
- University of Utah School of MedicineDivision of Physical Medicine and Rehabilitation Salt Lake City UT USA 84112
| |
Collapse
|