1
|
Wang H, Huo T, Tao H, Yang H. Monitoring the dynamics of ketamine analogues use in China through wastewater analysis: The emergence of 2-FDCNEK and 2-MDCK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177674. [PMID: 39571805 DOI: 10.1016/j.scitotenv.2024.177674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Ketamine analogues are rapidly emerging around the world and are considered one of the new psychoactive substances (NPS) of greatest concern. However, little is known about their actual use at the community level and their evolution on the drug market. Wastewater-based epidemiology is a useful tool to explore the profile of NPS use. Influent wastewater samples were collected from 21 cities in Southwest China between 2022 and 2023, and ketamine analogues were determined by liquid chromatography-tandem mass spectrometry. Results showed that five ketamine analogues were detected in at least one wastewater sample from 19 cities, of which four new analogues were found in wastewater for the first time. 2-fluoro deschloro-N-ethyl-ketamine (2-FDCNEK) was the most frequently detected analogue, with a population-normalized mass load of up to 3.18 mg day-1 1000 inh-1. The remaining analogues were detected less frequently, with mass loads of almost below 1 mg day-1 1000 inh-1. 2-fluoro deschloroketamine (2-FDCK), which was classified as a controlled substance in 2021, showed an evident downward trend. Furthermore, 2-(methylamino)-2-(2-methyphenyl)-cyclohexanone (2-MDCK) disappeared within a short period, whereas 2-FDCK and 2-FDCNEK persisted over the two-year observation period, suggesting that ketamine analogues containing halogen atoms on the phenyl group may have psychoactive effects similar to those of ketamine, with a high potential for abuse. These findings highlight the importance of wastewater analysis in monitoring the dynamic profile of NPS use, providing valuable information for authorities to take measures to prevent the rapid spread of NPS and minimize health risks.
Collapse
Affiliation(s)
- Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China.
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Hongli Tao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Hao Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
2
|
Frankenfeld F, Wagmann L, Meyer MR. Studies on the Stability and Microbial Biotransformation of Five Deschloroketamine Derivatives as Prerequisite for Wastewater-Based Epidemiology Screening. Drug Test Anal 2024. [PMID: 39659189 DOI: 10.1002/dta.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Wastewater (WW)-based epidemiology (WBE) is a powerful tool for screening and surveillance of drugs (of abuse) or new psychoactive substances (NPSs) in larger population. Since the drug market changes frequently, it is crucial for WBE to define screening and surveillance biomarkers considering drug metabolism and (microbial) stability. The aims of the presented work were first to identify metabolites, potentially serving as a WBE biomarker of five deschloroketamine derivatives (DCKDs) in rat feces samples after oral administration in addition to already known urinary metabolites, and second to elucidate the microbial biotransformation and WW stability of five DCKDs and their metabolites detected in urine and feces. Microbial biotransformation and stability of DCKD and their metabolites in WW were assessed by incubating parent compounds at 0.1 mg/L or rat urine or rat feces samples in freshly collected, untreated, influent WW over a period of 24 h. All samples were analyzed using liquid chromatography-high-resolution tandem mass spectrometry. All parent compounds, seven Phase I, and one Phase II metabolite were detected in rat feces samples. After WW incubations, all tested DCKD and their metabolites were still detectable at least in trace amounts, but particularly, peak areas of the Phase II N- and O-glucuronides showed a markable decrease. This is in line with previous findings where Phase II conjugates were identified to be unstable in WW and thus not recommended as a WW biomarker. Hence, incubations demonstrated that the five DCKD and most of their metabolites were sufficiently stable in WW influent and can thus be used as analytical targets in the context of WBE.
Collapse
Affiliation(s)
- Fabian Frankenfeld
- Department of Experimental and Clinical Toxicology and Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology and Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology and Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Magny R, Mégarbane B, Chevillard L, Roulland E, Bardèche-Trystram B, Dumestre-Toulet V, Labat L, Houzé P. A combined toxicokinetic and metabolic approach to investigate deschloro-N-ethylketamine exposure in a multidrug user. J Pharm Biomed Anal 2024; 243:116086. [PMID: 38518457 DOI: 10.1016/j.jpba.2024.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
The use of new psychoactive substances derived from ketamine is rarely reported in France. A chronic GHB, 3-MMC, and methoxetamine consumer presented a loss of consciousness in a chemsex context and was referred to the intensive care unit with a rapid and favorable outcome. To investigate the chemicals responsible for the intoxication, a comprehensive analysis was conducted on the ten plasma samples collected over a 29.5-hour period, urine obtained upon admission, a 2-cm hair strand sample, and a seized crystal. These analyses were performed using liquid chromatography hyphenated to high resolution tandem mass spectrometry operating in targeted and untargeted modes. Additionally, analyses using gas chromatography coupled to mass spectrometry and nuclear magnetic resonance were conducted to probe the composition of the seized crystal. The molecular network-based approach was employed for data processing in non-targeted analyses. It allowed to confirm a multidrug exposure encompassing GHB, methyl-(aminopropyl)benzofuran (MAPB), (aminopropyl)benzofuran (APB), methylmethcathinone, chloromethcathinone, and a new psychoactive substance belonging to the arylcyclohexylamine family namely deschloro-N-ethyl-ketamine (O-PCE). Molecular network analysis facilitated the annotation of 27 O-PCE metabolites, including phase II compounds not previously reported. Plasma kinetics of O-PCE allowed the estimation of the elimination half-life of ∼5 hours. Kinetics of O-PCE metabolites was additionally characterized, possibly useful as surrogate biomarkers of consumption. We also observed marked alterations in lipid metabolism related to poly consumption of drugs. In conclusion, this case report provides a comprehensive analysis of exposure to O-PCE in a multidrug user including kinetic and metabolism data in human.
Collapse
Affiliation(s)
- Romain Magny
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France; INSERM UMRS-1144, Université Paris Cité, Paris 75006, France
| | - Bruno Mégarbane
- INSERM UMRS-1144, Université Paris Cité, Paris 75006, France; Réanimation Médicale et Toxicologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France.
| | | | | | - Benoit Bardèche-Trystram
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France
| | | | - Laurence Labat
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France; INSERM UMRS-1144, Université Paris Cité, Paris 75006, France
| | - Pascal Houzé
- Laboratoire de Toxicologie Biologique, Fédération de Toxicologie, Hôpital Lariboisière, AP-HP, Paris 75010, France; INSERM UMRS-1144, Université Paris Cité, Paris 75006, France.
| |
Collapse
|
4
|
Xu L, Yan H, Tang Y, Liu Y, Xiang P, Hang T. In vitro and in vivo metabolic study of three new psychoactive β-keto-arylcyclohexylamines. J Anal Toxicol 2024; 48:217-225. [PMID: 38619371 DOI: 10.1093/jat/bkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances have appeared on the illicit drug market. β-Keto-arylcyclohexylamine compounds play important pharmacological roles in anesthesia; however, because these new psychoactive substances have rapidly increasing illicit recreational use, the lack of detailed toxicity data are of particular concern. Therefore, analysis of their metabolites can help forensic personnel provide references and suggestions on whether a suspect has taken an illicit new psychoactive β-keto-arylcyclohexylamine. The present study investigated the in vitro and in vivo metabolism and metabolites of three β-keto-arylcyclohexylamines: deschloro-N-ethyl-ketamine, fluoro-N-ethyl-ketamine and bromoketamine. In vitro and in vivo models were established using zebrafish and human liver microsomes for analysis of Phase I and Phase II metabolites by liquid chromatography-high-resolution mass spectrometry. Altogether, 49 metabolites were identified. The results were applied for the subject urine samples of known fluoro-N-ethyl-ketamine consumer screen analysis in forensic cases. Hydroxy-deschloro-N-ethyl-ketamine, hydroxy-fluoro-N-ethyl-ketamine and hydroxy-bromoketamine were recommended as potential biomarkers for documenting intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Yu Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
| |
Collapse
|
5
|
Frankenfeld F, Wagmann L, Abelian A, Wallach J, Adejare A, Brandt SD, Meyer MR. In Vivo and In Vitro Metabolic Fate and Urinary Detectability of Five Deschloroketamine Derivatives Studied by Means of Hyphenated Mass Spectrometry. Metabolites 2024; 14:270. [PMID: 38786747 PMCID: PMC11122975 DOI: 10.3390/metabo14050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Ketamine derivatives such as deschloroketamine and deschloro-N-ethyl-ketamine show dissociative and psychoactive properties and their abuse as new psychoactive substances (NPSs) has been reported. Though some information is available on the biotransformation of dissociative NPSs, data on deschloro-N-cyclopropyl-ketamine deschloro-N-isopropyl-ketamine and deschloro-N-propyl-ketamine concerning their biotransformation and, thus, urinary detectability are not available. The aims of the presented work were to study the in vivo phase I and II metabolism; in vitro phase I metabolism, using pooled human liver microsomes (pHLMs); and detectability, within a standard urine screening approach (SUSA), of five deschloroketamine derivatives. Metabolism studies were conducted by collecting urine samples from male Wistar rats over a period of 24 h after their administration at 2 mg/kg body weight. The samples were analyzed using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) and gas chromatography-mass spectrometry (GC-MS). The compounds were mainly metabolized by N-dealkylation, hydroxylation, multiple oxidations, and combinations of these metabolic reactions, as well as glucuronidation and N-acetylation. In total, 29 phase I and 10 phase II metabolites were detected. For the LC-HRMS/MS SUSA, compound-specific metabolites were identified, and suitable screening targets could be recommended and confirmed in pHLMs for all derivatives except for deschloro-N-cyclopropyl-ketamine. Using the GC-MS-based SUSA approach, only non-specific acetylated N-dealkylation metabolites could be detected.
Collapse
Affiliation(s)
- Fabian Frankenfeld
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Anush Abelian
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
6
|
Hu W, Liu C, Hua Z, Li J, Li Z. Metabolism of four novel structural analogs of ketamine, 2-FXE [2-(ethylamino)-2-(2-fluorophenyl) cyclohexan-1-one], 2-MDCK [2-(methylamino)-2-(o-tolyl) cyclohexan-1-one], 3-DMXE [2-(ethylamino)-2-(m-tolyl) cyclohexan-1-one], and 2-DMXE [2-(ethylamino)-2-(o-tolyl) cyclohexan-1-one], in human liver microsomes based on ultra-performance liquid chromatography-high-resolution tandem mass spectrometry. Biomed Chromatogr 2024; 38:e5767. [PMID: 37990839 DOI: 10.1002/bmc.5767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023]
Abstract
New psychoactive substances are constantly emerging, among which ketamine analogs with the core structure of 2-amino-2-phenylcyclohexanone have attracted global attention due to their continued involvement in acute intoxications. The monitoring of these substances largely relies on the acquisition of metabolic data. However, the lack of in vitro human metabolism information for these emerging structural analogs presents significant challenges to drug control efforts. To address this challenge, we investigated the first-phase metabolism patterns of four novel ketamine structural analogs of 2-FXE [2-(ethylamino)-2-(2-fluorophenyl) cyclohexan-1-one], 2-MDCK [2-(methylamino)-2-(o-tolyl) cyclohexan-1-one], 3-DMXE [2-(ethylamino)-2-(m-tolyl) cyclohexan-1-one], and 2-DMXE [2-(ethylamino)-2-(o-tolyl) cyclohexan-1-one] utilizing human liver microsomes for the first time. Metabolites were identified using ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Our findings reveal that N-dealkylation and hydroxylation are the primary metabolic reactions, alongside other notable reactions, including oxidation, reduction, and dehydration. Based on our extensive research, we propose N-dealkylation and hydroxylation metabolites as appropriate analytical markers for monitoring the consumption of these substances.
Collapse
Affiliation(s)
- Wen Hu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, China
| | - Cuimei Liu
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, China
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Zhendong Hua
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, China
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Jing Li
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, China
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Zhiyu Li
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, China
| |
Collapse
|
7
|
Xu L, Liu X, Song Z, Xiang P, Hang T, Yan H. In vitro and in vivo metabolism of 3-Methoxyeticyclidine in human liver microsomes, a zebrafish model, and two human urine samples based on liquid chromatography-high-resolution mass spectrometry. Drug Test Anal 2024; 16:30-37. [PMID: 37125436 DOI: 10.1002/dta.3488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
3-Methoxyeticyclidine (3-MeO-PCE), a phencyclidine-type substance, has a higher N-methyl-D-aspartate receptor binding affinity than phencyclidine and an involvement in fatal intoxication cases. The aim of this study was to identify new biomarkers and biotransformation pathways for 3-MeO-PCE. In vitro models were established using zebrafish and human liver microsomes for analysis of the phases I and II metabolites of 3-MeO-PCE by liquid chromatography-high-resolution mass spectrometry. Urine samples of known 3-MeO-PCE consumers in forensic cases were then subjected to analysis. Overall, 14 metabolites were identified in zebrafish and human liver microsomes, allowing postulation of the following metabolic pathways: hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, combination, and glucuronidation or sulfation. 3-MeO-PCE and three metabolites (M2, M3, and M6) were detected in urine. We recommended M2 (the hydroxylation product) as a potential biomarker for documenting 3-MeO-PCE intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinze Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixuan Song
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
8
|
Fan Y, Gao J, Chen X, Wu H, Ke X, Xu Y. Study on the Mass Spectrometry Fragmentation Patterns for Rapid Screening and Structure Identification of Ketamine Analogues in Illicit Powders. Molecules 2023; 28:6510. [PMID: 37764286 PMCID: PMC10535375 DOI: 10.3390/molecules28186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Ketamine analogues have been emerging in recent years and are causing severe health and social problems worldwide. Ketamine analogues use 2-phenyl-2-aminocyclohexanone as the basic structure and achieve physiological reactions similar to or even more robust than the prototype of ketamine by changing the substituents on the benzene ring (R1 and R2) and amine group (RN1). Therefore, the mass spectrometry (MS) fragmentation pathways and fragments of ketamine analogues have certain regularity. Eight ketamine analogues are systematically investigated by GC-QTOF/MS and LC-Q-Orbitrap MS/MS with the positive mode of electrospray ionization. The MS fragmentation patterns of ketamine analogues are summarized according to high-resolution MS data. The α-cleavage of carbon bond C1-C2 in the cyclohexanone moiety and further losses of CO, methyl radical, ethyl radical and propyl radical are the characteristic fragmentation pathways of ketamine analogues in EI-MS mode. The loss of H2O or the sequential loss of RN1NH2, CO and C4H6 are the distinctive fragmentation pathways of ketamine analogues in ESI-MS/MS mode. Moreover, these MS fragmentation patterns are first introduced for the rapid screening of ketamine analogues in suspicious powder. Furthermore, the structure of the ketamine analogue in suspicious powder is 2-(Methylamino)-2-(o-tolyl)cyclohexan-1-one, which is further confirmed by NMR. This study contributes to the identification of the chemical structure of ketamine analogues, which can be used for the rapid screening of ketamine analogues in seized chemicals.
Collapse
Affiliation(s)
- Yilei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China; (Y.F.); (X.K.)
- Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310053, China
| | - Jianhong Gao
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou 310053, China (X.C.)
| | - Xianxin Chen
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou 310053, China (X.C.)
| | - Hao Wu
- Dian Regional Forensic Science Institute Zhejiang, Hangzhou 310007, China;
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China; (Y.F.); (X.K.)
| | - Yu Xu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou 310053, China (X.C.)
| |
Collapse
|
9
|
Gao J, Xu B, Yang R, Zhang H. Screening strategy for ketamine-based new psychoactive substances using fragmentation characteristics from high resolution mass spectrometry. Forensic Sci Int 2023; 347:111677. [PMID: 37028217 DOI: 10.1016/j.forsciint.2023.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Recreational designer drugs called new psychoactive substances (NPS) are emerging and pose enormous risks to public health. Detection of recently discovered or unreported NPS remains a huge challenge by using traditional targeted mass spectrometry methods. Here a novel screening strategy was developed to detect both known and novel analogs of NPS based on fragmentation characteristics from liquid chromatography-high resolution mass spectrometry (LC-HRMS). The HRMS fragmentation pathway of one selected NPS family was investigated to form a database containing predicted drugs as well as their mass characteristics. During the study, an unexpected substituent effect was found to distinguish geometric isomers. Seventy-eight seized samples were analyzed using this strategy, four ketamine-based NPS were detected and three of them were newly marketed. The substituent effect predicted the position of their phenylic substituent, the results were confirmed by NMR.
Collapse
|
10
|
Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry. Metabolites 2023; 13:metabo13030432. [PMID: 36984871 PMCID: PMC10055977 DOI: 10.3390/metabo13030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
3-Hydroxyeticyclidine (3-HO-PCE) is a ketamine derivative that produces dissociative, hallucinogenic, and euphoric effects when consumed, but little is known about its pharmacological properties, metabolism, and toxicity compared to other designer ketamine analogs. To address this gap in knowledge, this study explored for the first time the metabolism of 3-HO-PCE. Based on this investigation, it is hypothesized that combining the use of Human Liver Microsomes (HLM) as an In vitro model with urine and hair samples from drug users may enable the identification of key analytes that can extend the detection window of 3-HO-PCE, particularly in cases of overdose. The analysis identified 15 putative metabolites, 12 of which are produced through phase I metabolism involving N-dealkylation, deamination, and oxidation, and 3 through phase II O-glucuronidation. The metabolism of 3-HO-PCE is similar to that of O-PCE, another designer ketamine of the eticyclidine family. The study identified M2a and hydroxy-PCA as reliable biomarkers for untargeted screening of the eticyclidine family in urine and hair, respectively. For targeted screening of 3-HO-PCE, M10 is recommended as the target analyte in urine, and M5 shows promise for long-term monitoring of 3-HO-PCE using hair analysis.
Collapse
|
11
|
Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int J Mol Sci 2022; 23:ijms232415574. [PMID: 36555217 PMCID: PMC9779550 DOI: 10.3390/ijms232415574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.
Collapse
|
12
|
Yen YT, Tsai YS, Su WL, Huang DY, Wu HH, Tseng SH, Wang HH, Chiu CY, Wang CF, Liu CY, Chyueh SC. New ketamine analogue: 2-fluorodeschloro-N-ethyl-ketamine and its suggested metabolites. Forensic Sci Int 2022; 341:111501. [DOI: 10.1016/j.forsciint.2022.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
|
13
|
Goncalves R, Pelletier R, Couette A, Gicquel T, Le Daré B. Suitability of high-resolution mass spectrometry in analytical toxicology: Focus on drugs of abuse. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
[History of Ketamine: An ancient molecule that is still popular today]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:1-8. [PMID: 33915159 DOI: 10.1016/j.pharma.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023]
Abstract
The history of ketamine begins in 1962, when Calvin Stevens of the pharmaceutical laboratory Parke-Davis synthesizes it from phencyclidine, a molecule with psychodysleptic, hallucinogenic and dissociative properties. Following the first administration of ketamine to humans in 1964 in Jackson prison (Michigan, USA), its dissociative effects associated with short anaesthesia were reported, and a patent for its human use was filed in 1966. In the 1990s, the discovery of opioid-induced hyperalgesia sparked interest in ketamine as an analgesic. In recent years, the human use of ketamine, and in particular its esketamine enantiomer, has shifted towards the treatment of depression. The first cases of ketamine abuse were reported in 1992 in France, leading to special surveillance by the health authorities, and its inclusion in the list of narcotic drugs in 1997. Today, ketamine has become an attractive substance for recreational use, gradually emerging from alternative techno circles to spread to more commercial party scenes. These elements represent a public health concern, associated with the risk of developing new chemically synthesized analogues, the harmful effects of which are still little known.
Collapse
|