1
|
Li B, He M, Xu Z, Zhang Q, Zhang L, Zhao S, Cao Y, Mou N, Wang Y, Wang G. Biomimetic ROS-responsive hyaluronic acid nanoparticles loaded with methotrexate for targeted anti-atherosclerosis. Regen Biomater 2024; 11:rbae102. [PMID: 39411198 PMCID: PMC11474234 DOI: 10.1093/rb/rbae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 10/19/2024] Open
Abstract
Atherosclerosis (AS), an inflammatory disease characterized by lipid accumulation, has a high global incidence and mortality rate. Recently, nanotherapeutic approaches that target pathological sites and improve drug bioavailability and biocompatibility hold great promise for AS treatment. In this study, a biomimetic ROS-responsive hyaluronic acid-based nanomaterial was prepared for targeted anti-AS. Specifically, a safe ROS-responsive carrier based on hyaluronic acid (HSP) was prepared to load methotrexate (MTX), a drug known for its ability to enhance lipid excretion, resulting in the formation of MTX-loaded nanoparticles (MTXNPs). Furthermore, the macrophage membrane was coated on the surface of MTXNPs to obtain MM/MTXNPs. Both MTXNPs and MM/MTXNPs exhibited ROS responsiveness and demonstrated excellent biocompatibility. In vitro experiments revealed that MM/MTXNPs could evade macrophage phagocytosis and exhibited high uptake rates by inflamed endothelial cells. MM/MTXNPs also reduced lipid accumulation in foam cells. In vivo experiments showed that MM/MTXNPs exhibited superior accumulation at AS plaque sites, facilitated by the surface membrane layer containing integrin α4β1 and CD47, resulting in an enhanced therapeutic effect in inhibiting plaque development compared to free MTX and MTXNPs. Therefore, HSP represents a promising nanocarrier to load hydrophobic MTX, enabling effective and biocompatible enhancement of AS treatment.
Collapse
Affiliation(s)
- Bingyi Li
- JinFeng Laboratory, Chongqing 401329, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qianting Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Liyuan Zhang
- JinFeng Laboratory, Chongqing 401329, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Guixue Wang
- JinFeng Laboratory, Chongqing 401329, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
2
|
Nieto-Estévez V, Pignatelli J, Araúzo-Bravo MJ, Hurtado-Chong A, Vicario-Abejón C. A global transcriptome analysis reveals molecular hallmarks of neural stem cell death, survival, and differentiation in response to partial FGF-2 and EGF deprivation. PLoS One 2013; 8:e53594. [PMID: 23308259 PMCID: PMC3538603 DOI: 10.1371/journal.pone.0053594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Neurosphere cell culture is a commonly used model to study the properties and potential applications of neural stem cells (NSCs). However, standard protocols to culture NSCs have yet to be established, and the mechanisms underlying NSC survival and maintenance of their undifferentiated state, in response to the growth factors FGF-2 and EGF are not fully understood. Using cultures of embryonic and adult olfactory bulb stem cells (eOBSCs and aOBSCs), we analyzed the consequences of FGF-2 and EGF addition at different intervals on proliferation, cell cycle progression, cell death and differentiation, as well as on global gene expression. As opposed to cultures supplemented daily, addition of FGF-2 and EGF every 4 days significantly reduced the neurosphere volume and the total number of cells in the spheres, mainly due to increased cell death. Moreover, partial FGF-2 and EGF deprivation produced an increase in OBSC differentiation during the proliferative phase. These changes were more evident in aOBSC than eOBSC cultures. Remarkably, these effects were accompanied by a significant upregulation in the expression of endogenous Fgf-2 and genes involved in cell death and survival (Cryab), lipid catabolic processes (Pla2g7), cell adhesion (Dscaml1), cell differentiation (Dscaml1, Gpr17, S100b, Ndrg2) and signal transduction (Gpr17, Ndrg2). These findings support that a daily supply of FGF-2 and EGF is critical to maintain the viability and the undifferentiated state of NSCs in culture, and they reveal novel molecular hallmarks of NSC death, survival and the initiation of differentiation.
Collapse
Affiliation(s)
- Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marcos J. Araúzo-Bravo
- Laboratory of Computational Biology and Bioinformatics, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Anahí Hurtado-Chong
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Doncel-Pérez E, Caballero-Chacón S, Nieto-Sampedro M. Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 2009; 57:1393-409. [DOI: 10.1002/glia.20858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Buchholz JN, Behringer EJ, Pottorf WJ, Pearce WJ, Vanterpool CK. Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function. Aging Cell 2007; 6:285-96. [PMID: 17517039 PMCID: PMC1974774 DOI: 10.1111/j.1474-9726.2007.00298.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones.
Collapse
Affiliation(s)
- John N Buchholz
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|
5
|
Cheng Y, Zhang HT, Sun L, Guo S, Ouyang S, Zhang Y, Xu J. Involvement of cell adhesion molecules in polydatin protection of brain tissues from ischemia-reperfusion injury. Brain Res 2006; 1110:193-200. [PMID: 16870162 DOI: 10.1016/j.brainres.2006.06.065] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/18/2022]
Abstract
Previous studies have demonstrated that polydatin, a crystal component extracted from the root stem of the perennial herbage Polygonum Cuspidatum Sieb.et Zucc, exerts a neuroprotective effect on cerebral injury induced by ischemia/reperfusion. To investigate the possible mechanism of this action, we determined the effects of polydatin on the expression of cell adhesion molecules (CAMs) after ischemia-induced cerebral injury. Rats were treated with polydatin (i.v.) immediately after the operation of middle cerebral artery occlusion (MCAO) for 1 h. It was found that polydatin improved neurological deficits and reduced the volume of brain infarction. In addition, polydatin decreased the levels of CAMs relative to the control (MCAO alone); these included intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, L-selectin and Integrins. These results suggest that polydatin exerts protective effects likely via inhibition of the expression of various CAMs; polydatin may be a potential agent for treatment of brain injury associated with stroke.
Collapse
Affiliation(s)
- Yufang Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | |
Collapse
|
6
|
Vanterpool C.K, Vanterpool EA, Pearce WJ, Buchholz. JN. Advancing age alters the expression of the ryanodine receptor 3 isoform in adult rat superior cervical ganglia. J Appl Physiol (1985) 2006; 101:392-400. [PMID: 16645194 PMCID: PMC1569677 DOI: 10.1152/japplphysiol.00167.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sympathetic nerves arising from the superior cervical ganglion (SCG) protect the cerebrovasculature during periods of acute hypertension and may play a role in homeostasis of target organs. The functions of these nerves depend on calcium release triggered by activation of ryanodine receptor (RyR) channels. The function of RyR channels is in part dependent on genetic expression and regulation by numerous protein modulators such as neuronal nitric oxide synthase (nNOS) neurons also found in the SCG. We have shown that release of calcium in SCG cells is altered during late maturation and advancing age. However, the underlying molecular mechanisms that may in part account for these data are elusive. Therefore we used molecular techniques to test the hypothesis that advancing age alters the pattern of genetic expression and/or protein levels of RyRs and their modulation by nNOS in the SCG in F344 rats aged 6, 12, and 24 mo. Surprisingly, ryr1 expression was undetectable in all age groups and ryr2 and ryr3 are the predominantly transcribed isoforms in the adult rat SCG. mRNA and protein levels for RyR2 isoform did not change with advancing age. However, ryr3 mRNA levels increased from 6 to 12 mo and declined from 12 to 24 mo. Similarly, RyR3 receptor protein levels also increased from 6 to 12 mo and declined from 12 to 24 mo. Because nNOS and the phosphorylation of the RyRs have been shown to modulate the function of RyRs, total phosphorylation and nNOS protein levels were analyzed in all age groups. Phosphorylation levels of the RyRs were similar in all age groups. However, nNOS protein levels increased from 6 to 12 mo followed by decline from 12 to 24 mo. These data suggest that advancing age selectively impacts the genetic expression and protein levels of RyR3 as well as modulatory nNOS protein levels. In addition, these data may part provide some insight into the possible changes in the function of RyRs that may occur with the normal aging process.
Collapse
Affiliation(s)
| | - Elaine A. Vanterpool
- Department of Microbiology and Molecular Genetics, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | - John N. Buchholz.
- Department of Physiology and Pharmacology
- *Corresponding author: John Buchholz, Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, E-mail:
| |
Collapse
|
7
|
Grazioli A, Alves CS, Konstantopoulos K, Yang JT. Defective blood vessel development and pericyte/pvSMC distribution in alpha 4 integrin-deficient mouse embryos. Dev Biol 2006; 293:165-77. [PMID: 16529735 DOI: 10.1016/j.ydbio.2006.01.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/20/2006] [Accepted: 01/27/2006] [Indexed: 11/16/2022]
Abstract
Blood vessel development is in part regulated by pericytes/presumptive vascular smooth muscle cells (PC/pvSMCs). Here, we demonstrate that interactions between PC/pvSMCs and extracellular matrix play a critical role in this event. We show that the cranial vessels in alpha4 integrin-deficient mouse embryos at the stage of vessel remodeling are increased in diameter. This defect is accompanied by a failure of PC/pvSMCs, which normally express alpha4beta1 integrin, to spread uniformly along the vessels. We also find that fibronectin but not VCAM-1 is localized in the cranial vessels at this stage. Furthermore, cultured alpha4 integrin-null PC/pvSMCs plated on fibronectin display a delay in initiating migration, a reduction in migration speed, and a decrease in directional persistence in response to a polarized force of shear flow. These results suggest that specific motile activities of PC/pvSMCs regulated by mechanical signals imposed by the interstitial extracellular matrix may also be required in vivo for the distribution and function of the PC/pvSMCs during blood vessel development.
Collapse
Affiliation(s)
- Alison Grazioli
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
8
|
Wingerd KL, Wayne WC, Jackson DY, Clegg DO. Involvement of alpha4 integrins in maintenance of cardiac sympathetic axons. Auton Neurosci 2005; 122:58-68. [PMID: 16181811 DOI: 10.1016/j.autneu.2005.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/01/2005] [Accepted: 08/06/2005] [Indexed: 11/15/2022]
Abstract
Sympathetic neurons extend and maintain axons that innervate the myocardium, and proper innervation is important for cardiac function. However, the molecular basis for axon outgrowth and maintenance is not well understood. We have shown previously that the integrin alpha4beta1 is expressed on developing axons, and the alpha4 function is important for the development of innervation in vivo [Wingerd, K.L., Goodman, N.L., Tresser, J.W., Smail, M.M., Leu, S.T., Rohan, S.J., Pring, J.L., Jackson, D.Y., and Clegg, D.O., 2002. Alpha 4 integrins and vascular cell adhesion molecule-1 play a role in sympathetic innervation of the heart. J. Neurosci. 22,10772-10780]. Here we examine the function of alpha4beta1 integrins in the maintenance of cardiac sympathetic innervation in vitro and in vivo, and investigate integrin expression and function after myocardial infarction and in hypertensive rats. On substrates of vascular cell adhesion molecule-1 (VCAM-1), alpha4beta1 was required for both initial outgrowth and maintenance of neurites in vitro. On fibronectin substrates, initial outgrowth requires only alpha4 integrins, but maintenance requires both alpha4 integrins and RGD-dependent integrins. In vivo, in adult Long Evans rats, inhibition of alpha4 integrins resulted in decreased maintenance of sympathetic fibers innervating the apex of the heart. However, alpha4 integrins were not detected on most sympathetic axons that sprout after myocardial infarction, and alpha4 function was not required for sprouting. Spontaneously hypertensive rats (SHR) have increased numbers of cardiac sympathetic fibers compared to the parental Wistar strain, but many of these lack alpha4 expression, and alpha4 function is not required for maintenance of these fibers in the heart. These results suggest that developing sympathetic axons and sprouting sympathetic axons use different mechanisms of outgrowth, and that maintenance of cardiac sympathetic innervation involves alpha4 integrins in some rat strains.
Collapse
Affiliation(s)
- Kevin L Wingerd
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|