1
|
Yuan F, Yang J, Ma F, Hu Z, Malik V, Zang R, Li D, Shi X, Huang X, Zhou H, Wang J. Pluripotency factor Tex10 finetunes Wnt signaling for spermatogenesis and primordial germ cell development. Nat Commun 2025; 16:1900. [PMID: 39988597 PMCID: PMC11847947 DOI: 10.1038/s41467-025-57165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Testis-specific transcript 10 (Tex10) is highly expressed in the testis, embryonic stem cells (ESCs), and primordial germ cells (PGCs). We previously generated a Tex10 knockout mouse model demonstrating its critical roles in ESC pluripotency and preimplantation development. Here, using conditional knockout mice and dTAG-degron ESCs, we show Tex10 is required for spermatogenesis and ESC-to-PGCLC differentiation. Specifically, Tex10-null spermatocytes arrest at metaphase I, compromising round spermatid formation. Tex10 depletion and overexpression compromise and enhance ESC-to-PGCLC differentiation, respectively. Mechanistically, bulk and single-cell RNA sequencing reveals that Tex10 depletion downregulates genes involved in pluripotency, PGC development, and spermatogenesis while upregulating genes promoting somatic programs. Chromatin occupancy study reveals that Tex10 binds to H3K4me3-marked promoters of Psmd3 and Psmd7, negative regulators of Wnt signaling, and activates their expression, thereby restraining Wnt signaling. Our study identifies Tex10 as a previously unappreciated factor in spermatogenesis and PGC development, offering potential therapeutic insights for treating male infertility.
Collapse
Affiliation(s)
- Feifei Yuan
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, China
| | - Fanglin Ma
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhe Hu
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Yang J, Yang X, Zhang YF, Tian JN, Fan SC, Gao Y, Li HL, Cai CH, Huang M, Bi HC. Peroxisome proliferator-activated receptor α agonist induces mouse hepatomegaly through the spatial hepatocyte enlargement and proliferation. Acta Pharmacol Sin 2023; 44:2037-2047. [PMID: 37193756 PMCID: PMC10545716 DOI: 10.1038/s41401-023-01096-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/22/2023] [Indexed: 05/18/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) activation-induced hepatomegaly is accompanied by hepatocyte hypertrophy around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area. However, the molecular mechanisms underlying this spatial change of hepatocytes remains unclear. In this study, we examined the characteristics and possible reasons for the zonation distinction of hypertrophy and proliferation during PPARα activation-induced mouse liver enlargement. Mice were injected with corn oil or a typical mouse PPARα agonist WY-14643 (100 mg·kg-1·d-1, i.p.) for 1, 2, 3, 5 or 10 days. At each time point, the mice were sacrificed after the final dose, and liver tissues and serum were harvested for analysis. We showed that PPARα activation induced zonal changes in hepatocyte hypertrophy and proliferation in the mice. In order to determine the zonal expression of proteins related to hepatocyte hypertrophy and proliferation in PPARα-induced liver enlargement, we performed digitonin liver perfusion to separately destroy the hepatocytes around the CV or PV areas, and found that PPARα activation-induced increase magnitude of its downstream targets such as cytochrome P450 (CYP) 4 A and acyl-coenzyme A oxidase 1 (ACOX1) levels around the CV area were higher compared with those around the PV area. Upregulation of proliferation-related proteins such as cell nuclear antigen (PCNA) and cyclin A1 (CCNA1) after WY-14643-induced PPARα activation mainly occurred around the PV area. This study reveals that the zonal expression of PPARα targets and proliferation-related proteins is responsible for the spatial change of hepatocyte hypertrophy and proliferation after PPARα activation. These findings provide a new insight into the understanding of PPARα activation-induced liver enlargement and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ning Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Cheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng-Hui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui-Chang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Li D, Yang J, Ma F, Malik V, Zang R, Shi X, Huang X, Zhou H, Wang J. The pluripotency factor Tex10 finetunes Wnt signaling for PGC and male germline development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529824. [PMID: 36865339 PMCID: PMC9980098 DOI: 10.1101/2023.02.23.529824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling. Depletion and overexpression of Tex10 hyperactivate and attenuate the Wnt signaling, resulting in compromised and enhanced PGCLC specification efficiency, respectively. Using the Tex10 conditional knockout mouse models combined with single-cell RNA sequencing, we further uncover critical roles of Tex10 in spermatogenesis with Tex10 loss causing reduced sperm number and motility associated with compromised round spermatid formation. Notably, defective spermatogenesis in Tex10 knockout mice correlates with aberrant Wnt signaling upregulation. Therefore, our study establishes Tex10 as a previously unappreciated player in PGC specification and male germline development by fine-tuning Wnt signaling.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
- These authors contributed equally
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
- These authors contributed equally
| | - Fanglin Ma
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- These authors contributed equally
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
4
|
Shi YQ, Fu GQ, Zhao J, Cheng SZ, Li Y, Yi LN, Li Z, Zhang L, Zhang ZB, Dai J, Zhang DY. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol Ind Health 2019; 35:228-238. [DOI: 10.1177/0748233718824911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is a typical endocrine-disrupting chemical and reproductive toxicant. Although previous studies have attempted to describe the mechanism by which DEHP exposure results in reproductive dysfunction, few studies focused on puberty, a critical period of reproductive development, and the increased susceptibility to injury in adolescents. To elucidate the mechanism underpinning the testicular effects of DEHP in puberty, we sought to investigate the JAZF1/TR4 pathway in the testes of pubertal rats. Specifically, we focused on the role of the JAZF1/TR4 pathway in male reproduction, including the genes JAZF1, TR4, Sperm 1, and Cyclin A1. In the present study, rats were exposed to increasing concentrations of DEHP (0, 250, 500, and 1000 mg/kg/day) by oral gavages for 30 days. Then we assayed testicular zinc and oxidative stress levels. Our results indicated that DEHP exposure could lead to oxidative stress and decrease the contents of testicular zinc. Additionally, significant morphological changes and cell apoptosis were observed in testes exposed to DEHP, as identified by hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase-mediated nick and labeling assay. By measuring the expression levels of the above relevant genes by qPCR, we found the DEHP-induced increased expression of JAZF1 and decreased expression of TR4, Sperm 1, and Cyclin A1. Therefore, we have demonstrated that in vivo exposure to DEHP might induce reproductive toxicity in pubertal male rats through the JAZF1/TR4 pathway and oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| | - Guo-Qing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Shen-Zhou Cheng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - You Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Na Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Juan Dai
- Wuhan Centers for Disease Prevention and Control, Wuhan, People’s Republic of China
| | - Da-Yi Zhang
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Panigrahi SK, Manterola M, Wolgemuth DJ. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins. PLoS One 2017; 12:e0173926. [PMID: 28301569 PMCID: PMC5354389 DOI: 10.1371/journal.pone.0173926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/28/2017] [Indexed: 12/25/2022] Open
Abstract
Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis.
Collapse
Affiliation(s)
- Sunil K. Panigrahi
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Marcia Manterola
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
- Program of Human Genetics, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Debra J. Wolgemuth
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
- Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, United States of America
- Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
6
|
Vasileva A, Hopkins KM, Wang X, Weisbach MM, Friedman RA, Wolgemuth DJ, Lieberman HB. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse. J Cell Sci 2013; 126:3927-38. [PMID: 23788429 PMCID: PMC3757332 DOI: 10.1242/jcs.126763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/01/2023] Open
Abstract
In mitotic cells, RAD9A functions in repairing DNA double-strand breaks (DSBs) by homologous recombination and facilitates the process by cell cycle checkpoint control in response to DNA damage. DSBs occur naturally in the germline during meiosis but whether RAD9A participates in repairing such breaks is not known. In this study, we determined that RAD9A is indeed expressed in the male germ line with a peak of expression in late pachytene and diplotene stages, and the protein was found associated with the XY body. As complete loss of RAD9A is embryonic lethal, we constructed and characterized a mouse strain with Stra8-Cre driven germ cell-specific ablation of Rad9a beginning in undifferentiated spermatogonia in order to assess its role in spermatogenesis. Adult mutant male mice were infertile or sub-fertile due to massive loss of spermatogenic cells. The onset of this loss occurs during meiotic prophase, and there was an increase in the numbers of apoptotic spermatocytes as determined by TUNEL. Spermatocytes lacking RAD9A usually arrested in meiotic prophase, specifically in pachytene. The incidence of unrepaired DNA breaks increased, as detected by accumulation of γH2AX and DMC1 foci on the axes of autosomal chromosomes in pachytene spermatocytes. The DNA topoisomerase IIβ-binding protein 1 (TOPBP1) was still localized to the sex body, albeit with lower intensity, suggesting that RAD9A may be dispensable for sex body formation. We therefore show for the first time that RAD9A is essential for male fertility and for repair of DNA DSBs during meiotic prophase I.
Collapse
Affiliation(s)
- Ana Vasileva
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
| | - Xiangyuan Wang
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Melissa M. Weisbach
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource of the Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, Room 824, New York, NY 10032, USA
| | - Debra J. Wolgemuth
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Howard B. Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Wang DH, Hu JR, Wang LY, Hu YJ, Tan FQ, Zhou H, Shao JZ, Yang WX. The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS One 2012; 7:e39920. [PMID: 22768170 PMCID: PMC3386923 DOI: 10.1371/journal.pone.0039920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spontaneous and stress-induced germ cell apoptosis during spermatogenesis of multicellular organisms have been investigated broadly in mammals. Spermatogenetic process in urodele amphibians was essentially like that in mammals in spite of morphological differences; however, the mechanism of germ cell apoptosis in urodele amphibians remains unknown. The Chinese fire-belly newt, Cynops orientalis, was an excellent organism for studying germ cell apoptosis due to its sensitiveness to temperature, strong endurance of starvation, and sensitive skin to heavy metal exposure. METHODOLOGY/PRINCIPAL FINDINGS TUNEL result showed that spontaneous germ cell apoptosis took place in normal newt, and severe stress-induced apoptosis occurred to spermatids and sperm in response to heat shock (40°C 2 h), cold exposure (4°C 12 h), cadmium exposure (Cd 36 h), and starvation stress. Quantitative reverse transcription polymerase chain reactions (qRT-PCR) showed that gene expression of Caspase3 or Caspase7 was obviously elevated after stress treatment. Apaf1 was not altered at its gene expression level, and p53 was significantly decreased after various stress treatment. Caspase assay demonstrated that Caspase-3, -8, -9 enzyme activities in newt testis were significantly elevated after heat shock (40°C 2 h), cold exposure (4°C 12 h), and cadmium exposure (Cd 36 h), while Caspase3 and Caspase8 activities were increased with Caspase9 significantly decreased after starvation treatment. CONCLUSIONS/SIGNIFICANCE Severe germ cell apoptosis triggered by heat shock, cold exposure, and cadmium exposure was Caspase3 dependent, which probably involved both extrinsic and intrinsic pathways. Apaf1 may be involved in this process without elevating its gene expression. But starvation-induced germ cell apoptosis was likely mainly through extrinsic pathway. p53 was probably not responsible for stress-induced germ cell apoptosis in newt testis. The intriguing high occurrence of spermatid and sperm apoptosis probably resulted from the sperm morphology and unique reproduction policy of Chinese fire-belly newt, Cynops orientalis.
Collapse
Affiliation(s)
- Da-Hui Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Li-Ya Wang
- Department of Reproductive Endocrinology, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan-Jun Hu
- Department of Reproductive Endocrinology, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Zhou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Shao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Abstract
Trp53 is a protein which is able to control semen parameters in mice, but the extent of that control depends on the genetic background of the mouse strain. Males from C57BL/6Kw, 129/Sv, C57BL×129 -p53+/+ (wild type controls) and C57BL×129-p53-/- (mutants) strains were used in the study, and histology and light microscopy were applied to evaluate the influence of genetic background and Trp53 (p53) genotype on testes morphology and semen quality in male mice. We showed that sperm head morphology, maturity and tail membrane integrity were controlled only by the genetic background of C57BL/6Kw and 129/Sv males, while testes weight and sperm concentration depended on both the genetic background and p53 genotype. Cell accumulation in seminiferous tubules may be responsible for heavier testes of p53-deficient males. In addition, to examine the effect of sex and p53 genotype on embryo lethality, pairs of control (C57BL×129-p53+/+) and heterozygous (C57BL×129-p53+/-) mice were examined. Before day 7 post coitum (dpc), female and male embryos were equally resorbed in both crosses types. After 7 dpc, preferential female embryo lethality in the heterozygote pairs was responsible for the skewed sex ratio in their progeny. Also, mutant female and male newborns were underrepresented in the litters of the heterozygous breeding pairs.
Collapse
|
9
|
Genetics of Meiosis and Recombination in Mice. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 298 2012; 298:179-227. [DOI: 10.1016/b978-0-12-394309-5.00005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Abstract
SummaryThe aim of the study was to evaluate the influence of the chromosome Y structure and Trp53 genotype on semen quality parameters. Mice with partial deletion of the Y chromosome (B10.BR-Ydel) have severely altered sperm head morphology when compared with males that possess the complete Y chromosome (B10.BR). Control males from B10.BR and B10.BR-Ydel mice, and mutant males from B10.BR-p53−/− and B10.BR-Ydel-p53−/− experimental groups were used. We assessed testis weight, sperm head abnormalities, viability of spermatozoa (eosin test), percentage of motile and immature sperm, and performed a hypo-osmotic test to detect abnormal tail membrane integrity. Sperm morphology and maturation were controlled by the genes within the deleted region of the Y chromosome. Testis weight was higher in the mutants than in the control males, possibly due to cell accumulation in Trp53-deficient males as the concentration of sperm was significantly increased in the mutants. An elevated percentage of abnormal sperm was noted in B10.BR-p53−/− and B10.BR-Ydel-p53−/− male mice. We suggest that, in Trp53-deficient mice, the sperm cells that escape apoptosis are the ones that have abnormal morphology. The only sperm quality parameter affected by the interplay between Trp53 and chromosome Y genes was sperm motility, which was elevated in B10.BR-p53−/− males, but remained unchanged in B10.BR-Ydel-p53−/− males.
Collapse
|
11
|
Abstract
The cyclins and their cyclin-dependent kinase partners, the Cdks, are the basic components of the machinery that regulates the passage of cells through the cell cycle. Among the cyclins, those known as the A-type cyclins are unique in that in somatic cells, they appear to function at two stages of the cell cycle, at the G1-S transition and again as the cells prepare to enter M-phase. Higher vertebrate organisms have two A-type cyclins, cyclin A1 and cyclin A2, both of which are expressed in the germ line and/or early embryo, following highly specialized patterns that suggest functions in both mitosis and meiosis. Insight into their in vivo functions has been obtained from gene targeting experiments in the mouse model. Loss of cyclin A1 results in disruption of spermatogenesis and male sterility due to cell arrest in the late diplotene stage of the meiotic cell cycle. In contrast, cyclin A2-deficiency is marked by early embryonic lethality; thus, understanding the function of cyclin A2 in the adult germ line awaits conditional mutagenesis or other approaches to knock down its expression.
Collapse
|
12
|
Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PLoS One 2010; 5:e15541. [PMID: 21124965 PMCID: PMC2988811 DOI: 10.1371/journal.pone.0015541] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 12/23/2022] Open
Abstract
ING2 (inhibitor of growth family, member 2) is a member of the plant homeodomain (PHD)-containing ING family of putative tumor suppressors. As part of mSin3A-HDAC corepressor complexes, ING2 binds to tri-methylated lysine 4 of histone H3 (H3K4me3) to regulate chromatin modification and gene expression. ING2 also functionally interacts with the tumor suppressor protein p53 to regulate cellular senescence, apoptosis and DNA damage response in vitro, and is thus expected to modulate carcinogenesis and aging. Here we investigate the developmental and physiological functions of Ing2 through targeted germline disruption. Consistent with its abundant expression in mouse and human testes, male mice deficient for Ing2 showed abnormal spermatogenesis and were infertile. Numbers of mature sperm and sperm motility were significantly reduced in Ing2−/− mice (∼2% of wild type, P<0.0001 and ∼10% of wild type, P<0.0001, respectively). Their testes showed degeneration of seminiferous tubules, meiotic arrest before pachytene stage with incomplete meiotic recombination, induction of p53, and enhanced apoptosis. This phenotype was only partially abrogated by concomitant loss of p53 in the germline. The arrested spermatocytes in Ing2−/− testes were characterized by lack of specific HDAC1 accumulation and deregulated chromatin acetylation. The role of Ing2 in germ cell maturation may extend to human ING2 as well. Using publicly available gene expression datasets, low expression of ING2 was found in teratozoospermic sperm (>3-fold reduction) and in testes from patients with defective spermatogenesis (>7-fold reduction in Sertoli-cell only Syndrome). This study establishes ING2 as a novel regulator of spermatogenesis functioning through both p53- and chromatin-mediated mechanisms, suggests that an HDAC1/ING2/H3K4me3-regulated, stage-specific coordination of chromatin modifications is essential to normal spermatogenesis, and provides an animal model to study idiopathic and iatrogenic infertility in men. In addition, a bona fide tumor suppressive role of Ing2 is demonstrated by increased incidence of soft-tissue sarcomas in Ing2−/− mice.
Collapse
|
13
|
Shaha C, Tripathi R, Mishra DP. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:1501-15. [PMID: 20403866 DOI: 10.1098/rstb.2009.0124] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular apoptosis appears to be a constant feature in the adult testis and during early development. This is essential because mammalian spermatogenesis is a complex process that requires precise homeostasis of different cell types. This review discusses the latest information available on male germ cell apoptosis induced by hormones, toxins and temperature in the context of the type of apoptotic pathway either the intrinsic or the extrinsic that may be used under a variety of stimuli. The review also discusses the importance of mechanisms pertaining to cellular apoptosis during testicular development, which is independent of exogenous stimuli. Since instances of germ cell carcinoma have increased over the past few decades, the current status of research on apoptotic pathways in teratocarcinoma cells is included. One other important aspect that is covered in this review is microRNA-mediated control of germ cell apoptosis, a field of research that is going to see intense activity in near future. Since knockout models of various kinds have been used to study many aspects of germ cell development, a comprehensive summary of literature on knockout mice used in reproduction studies is also provided.
Collapse
Affiliation(s)
- Chandrima Shaha
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi 110067, India.
| | | | | |
Collapse
|
14
|
Wolgemuth DJ, Roberts SS. Regulating mitosis and meiosis in the male germ line: critical functions for cyclins. Philos Trans R Soc Lond B Biol Sci 2010; 365:1653-62. [PMID: 20403876 DOI: 10.1098/rstb.2009.0254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Key components of the cell cycle machinery are the regulatory subunits, the cyclins, and their catalytic partners the cyclin-dependent kinases. Regulating the cell cycle in the male germ line cells represents unique challenges for this machinery given the constant renewal of gametes throughout the reproductive lifespan and the induction of the unique process of meiosis, a highly specialized kind of cell division. With challenges come opportunities to the critical eye, recognizing that understanding these specialized modes of regulation will provide considerable insight into both normal differentiation as well as disease conditions, including infertility and oncogenesis.
Collapse
Affiliation(s)
- Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, 1150 St Nicholas Avenue, Room 608, New York, NY 10032, USA.
| | | |
Collapse
|
15
|
Joshi AR, Jobanputra V, Lele KM, Wolgemuth DJ. Distinct properties of cyclin-dependent kinase complexes containing cyclin A1 and cyclin A2. Biochem Biophys Res Commun 2009; 378:595-9. [PMID: 19056339 PMCID: PMC4039035 DOI: 10.1016/j.bbrc.2008.11.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
Abstract
The distinct expression patterns of the two A-type cyclins during spermatogenesis and the absolute requirement for cyclin A1 in this biological process in vivo suggest that they may confer distinct biochemical properties to their CDK partners. We therefore compared human cyclin A1- and cyclin A2-containing CDK complexes in vitro by determining kinetic constants and by examining the complexes for their ability to phosphorylate pRb and p53. Differences in biochemical activity were observed in CDK2 but not CDK1 when complexed with cyclin A1 versus cyclin A2. Further, CDK1/cyclin A1 is a better kinase complex for phosphorylating potentially physiologically relevant substrates pRb and p53 than CDK2/cyclin A2. The activity of CDKs can therefore be regulated depending upon which A-type cyclin they bind and CDK1/cyclin A1 might be preferred in vivo.
Collapse
Affiliation(s)
- Ayesha R. Joshi
- Dept. of Gen. and Dev., Columbia University Medical Center, New York, NY 10032
- Dept. of Ob-Gyn, Columbia University Medical Center, New York, NY 10032
| | - Vaidehi Jobanputra
- Dept. of Gen. and Dev., Columbia University Medical Center, New York, NY 10032
- Dept. of Ob-Gyn, Columbia University Medical Center, New York, NY 10032
| | - Karen M. Lele
- Dept. of Gen. and Dev., Columbia University Medical Center, New York, NY 10032
- Dept. of Ob-Gyn, Columbia University Medical Center, New York, NY 10032
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032
| | - Debra J. Wolgemuth
- Dept. of Gen. and Dev., Columbia University Medical Center, New York, NY 10032
- Dept. of Ob-Gyn, Columbia University Medical Center, New York, NY 10032
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
16
|
Wolgemuth DJ. Function of cyclins in regulating the mitotic and meiotic cell cycles in male germ cells. Cell Cycle 2008; 7:3509-13. [PMID: 19001847 PMCID: PMC4080918 DOI: 10.4161/cc.7.22.6978] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The specialized cell cycles that characterize various aspects of the differentiation of germ cells provide a unique opportunity to understand heretofore elusive aspects of the in vivo function of cell cycle regulators. Key components of the cell cycle machinery are the regulatory sub-units, the cyclins, and their catalytic partners, the cyclin-dependent kinases. Some of the cyclins exhibit unique patterns of expression in germ cells that suggest possible concomitant distinct functions, predictions that are being explored by targeted mutagenesis in mouse models. A novel, meiosis-specific function has been shown for one of the A-type cyclins, cyclin A1. Embryonic lethality has obviated understanding of the germline functions of cyclin A2 and cyclin B1, while yet other cyclins, although expressed at specific stages of germ cell development, may have less essential function in the male germline.
Collapse
Affiliation(s)
- Debra J Wolgemuth
- Departments of Genetics and Development and Obstetrics and Gynecology, The Institute of Human Nutrition, The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA.
| |
Collapse
|
17
|
Hsu LCL, Chen HY, Lin YW, Chu WC, Lin MJ, Yan YT, Yen PH. DAZAP1, an hnRNP protein, is required for normal growth and spermatogenesis in mice. RNA (NEW YORK, N.Y.) 2008; 14:1814-1822. [PMID: 18669443 PMCID: PMC2525968 DOI: 10.1261/rna.1152808] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/23/2008] [Indexed: 05/26/2023]
Abstract
DAZAP1 (Deleted in Azoospermia Associated Protein 1) is a ubiquitous hnRNP protein that is expressed most abundantly in the testis. Its ability to shuttle between the nucleus and the cytoplasm and its exclusion from the transcriptionally inactive XY body in pachytene spermatocytes implicate it in mRNA transcription and transport. We generated Dazap1 mutant alleles to study the role of DAZAP1 in mouse development. Most mice homozygous for the null allele as well as a hypomorphic Fn allele died soon after birth. The few Dazap1(Fn/Fn) mice that survived could nonetheless live for more than a year. They appeared and behaved normally but were much smaller in size compared to their wild-type and heterozygous littermates. Both male and female Dazap1(Fn/Fn) mice were sterile. Males had small testes, and the seminiferous tubules were atrophic with increased numbers of apoptotic cells. The tubules contained many germ cells, including pachytene spermatocytes with visible XY-bodies and diplotene spermatocytes, but no post-meiotic cells. FACS analyses confirmed the absence of haploid germ cells, indicating spermatogenesis arrested right before the meiotic division. Female Dazap1(Fn/Fn) mice had small ovaries that contained normal-appearing follicles, yet their pregnancy produced no progeny due to failure in embryonic development. The phenotypes of Dazap1 mutant mice indicate that DAZAP1 is not only essential for spermatogenesis, but also required for the normal growth and development of mice.
Collapse
Affiliation(s)
- Lea Chia-Ling Hsu
- 1Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Yu Q, Wu J. Involvement of cyclins in mammalian spermatogenesis. Mol Cell Biochem 2008; 315:17-24. [PMID: 18470654 DOI: 10.1007/s11010-008-9783-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/30/2008] [Indexed: 11/29/2022]
Abstract
Mammalian spermatogenesis is a complicated developmental process by which undifferentiated germ cells continuously produce mature sperm throughout a lifetime. Stringent control of the cell cycle during spermatogenesis is required to ensure self-renewal of male germ line cells and differentiation of appropriate numbers of cells for the various lineages. Cyclins are key factors of cell cycle regulation and play crucial roles in governing both the mitotic and meiotic divisions that characterize spermatogenesis. Abnormal expression of some types of cyclins in the testes can induce apoptosis, infertility, testicular tumors, and other problems related to spermatogenesis in mammals. In this review, available data regarding cellular and molecular regulation of several different types of cyclins during mammalian spermatogenesis are collected and further discussed.
Collapse
Affiliation(s)
- Qingsheng Yu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China
| | | |
Collapse
|
19
|
Baumer N, Sandstede ML, Diederichs S, Kohler G, Readhead C, Ji P, Zhang F, Bulk E, Gromoll J, Berdel WE, Serve H, Muller-Tidow C. Analysis of the genetic interactions between Cyclin A1, Atm and p53 during spermatogenesis. Asian J Androl 2008; 9:739-50. [PMID: 17968459 DOI: 10.1111/j.1745-7262.2007.00339.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To analyze the functional interactions of Cyclin with p53 and Atm in spermatogenesis and DNA double-strand break repair. METHODS Two lines of double knockout mice were generated. Spermatogenesis and double strand break repair mechanisms were analyzed in Cyclin A1 (Ccna1); p53- and Ccna1; Atm-double knockout mice. RESULTS The block in spermatogenesis observed in Cyclin A1-/- (Ccna1-/-) testes at the mid-diplotene stage is associated with polynucleated giant cells. We found that Ccna1-deficient testes and especially the giant cells accumulate unrepaired DNA double-strand breaks, as detected by immunohistochemistry for phosphorylated H2AX. In addition, the giant cells escape from apoptosis. The development of giant cells occurred in meiotic prophase I, because testes lacking ATM, which are known to develop spermatogenic arrest earlier than prophase I, do not develop giant cells in the absence of cyclin A1. Cyclin A1 interacted with p53 and phosphorylated p53 in complex with CDK2. Interestingly, p53-deficiency significantly increased the number of giant cells in Ccna1-deficient testes. Gene expression analyses of a panel of DNA repair genes in the mutant testes revealed that none of the genes examined were consistently misregulated in the absence of cyclin A1. CONCLUSION Ccna1-deficiency in spermatogenesis is associated with defects in DNA double-strand break repair, which is enhanced by loss of p53.
Collapse
Affiliation(s)
- Nicole Baumer
- Department of Medicine, Hematology and Oncology, University of Munster, Domagkstr. 3, D-48129 Munster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ji P, Bäumer N, Yin T, Diederichs S, Zhang F, Beger C, Welte K, Fulda S, Berdel WE, Serve H, Müller-Tidow C. DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer 2007; 121:706-13. [PMID: 17455244 DOI: 10.1002/ijc.22634] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclin A1 plays a critical role in hematopoietic malignancies, notably, acute myeloid leukemia. The molecular mechanisms of cyclin A1 action are incompletely understood. Here, we show that cyclin A1 functions are mediated by the retinoblastoma and the Ku70 pathway. High levels of cyclin A1 and the associated CDK2 kinase activity were associated with increasing levels of phosphorylated retinoblastoma in vivo. UV irradiation induced a switch of the CDK2 towards cyclin A1, with accordance to changes in CDK2 kinase activity. The C-terminus of cyclin A1 directly interacted with Ku70, and DNA binding activity of Ku70 was modulated by cyclin A1/CDK2 and phosphatase treatment. Cyclin A1-deficiency induced by shRNA increased apoptosis that is induced by DNA damage and death receptor ligands. Taken together, these analyses demonstrate that cyclin A1 exerts antiapoptotic functions by interacting with retinoblastoma and Ku proteins in leukemia cells.
Collapse
Affiliation(s)
- Ping Ji
- Department of Medicine, Hematology and Oncology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nickerson HD, Joshi A, Wolgemuth DJ. Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev Biol 2007; 306:725-35. [PMID: 17498682 PMCID: PMC2701158 DOI: 10.1016/j.ydbio.2007.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 04/09/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Male mice lacking cyclin A1 protein are sterile. Their sterility results from an arrest in the meiotic cell cycle of spermatocytes, which we now identify as occurring at late diplotene, immediately before diakinesis. The stage of arrest in cyclin A1-deficient mice is distinct from the arrest seen in spermatocytes that are deficient in its putative catalytic partner Cdk2, which occurs much earlier in pachytene. The arrest in cyclin A1-deficient spermatocytes is also accompanied by an unusual clustering of centromeric heterochromatin. Consistent with a possible defect in the centromeric region, immunofluorescent staining of cyclin A1 protein shows localization in the region of the centromere. Phosphorylation of histone H3 at serine 10 in pericentromeric heterochromatin, which normally occurs in late diplotene, is reduced in spermatocytes from heterozygous Ccna1(+/-) testes and completely absent in spermatocytes with no cyclin A1 protein. Concomitantly, the levels of pericentromeric aurora B kinase, known to phosphorylate histone H3 during meiosis, are partially reduced in spermatocytes from testes of heterozygous mice and further reduced in homozygous null spermatocytes. These data suggest a critical and concentration-dependent function for cyclin A1 in the pericentromeric region in late diplotene of meiosis, perhaps in assembly or function of the passenger protein complex.
Collapse
Affiliation(s)
- Helen D Nickerson
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
22
|
Abstract
Numerous DNA double-strand breaks (DSBs) are introduced into the genome in the course of meiotic recombination. This poses a significant hazard to the genomic integrity of the cell. Studies in a number of organisms have unveiled the existence of surveillance mechanisms or checkpoints that couple the formation and repair of DSBs to cell cycle progression. Through these mechanisms, aberrant meiocytes are delayed in their meiotic progression, thereby facilitating repair of meiotic DSBs, or are culled through programmed cell death, thereby protecting the germline from aneuploidies that could lead to spontaneous abortions, birth defects and cancer predisposition in the offspring. Here we summarize recent progress in our understanding of these checkpoints. This review focuses on the surveillance mechanisms of the budding yeast S. cerevisiae, where the molecular details are best understood, but will frequently compare and contrast these mechanisms with observations in other organisms.
Collapse
Affiliation(s)
- Andreas Hochwagen
- Center for Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge Massachusetts 02139, USA
| | | |
Collapse
|