1
|
Sakaguchi S, Mizuno S, Okochi Y, Tanegashima C, Nishimura O, Uemura T, Kadota M, Naoki H, Kondo T. Single-cell transcriptome atlas of Drosophila gastrula 2.0. Cell Rep 2023:112707. [PMID: 37433294 DOI: 10.1016/j.celrep.2023.112707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing accurate spatial and lineage information are still lacking. Here, we report a single-cell transcriptome atlas of Drosophila gastrulae, divided into 77 transcriptomically distinct clusters. We find that the expression profiles of plasma-membrane-related genes, but not those of transcription-factor genes, represent each germ layer, supporting the nonequivalent contribution of each transcription-factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstruct the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation.
Collapse
Affiliation(s)
- Shunta Sakaguchi
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sonoko Mizuno
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Okochi
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tadashi Uemura
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Center for Living Systems Information Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Honda Naoki
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8511, Japan; Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Gowda SB, Banu A, Salim S, Peker KA, Mohammad F. Serotonin distinctly controls behavioral states in restrained and freely moving Drosophila. iScience 2022; 26:105886. [PMID: 36654863 PMCID: PMC9840979 DOI: 10.1016/j.isci.2022.105886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
When trapped in a physical restraint, animals must select an escape strategy to increase their chances of survival. After falling into an inescapable trap, they react with stereotypical behaviors that differ from those displayed in escapable situations. Such behaviors involve either a wriggling response to unlock the trap or feigning death to fend off a predator attack. The neural mechanisms that regulate animal behaviors have been well characterized for escapable situations but not for inescapable traps. We report that restrained vinegar flies exhibit alternating flailing and immobility to free themselves from the trap. We used optogenetics and intersectional genetic approaches to show that, while broader serotonin activation promotes immobility, serotonergic cells in the ventral nerve cord (VNC) regulate immobility states majorly via 5-HT7 receptors. Restrained and freely moving locomotor states are controlled by distinct mechanisms. Taken together, our study has identified serotonergic switches of the VNC that promote environment-specific adaptive behaviors.
Collapse
Affiliation(s)
- Swetha B.M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar,Corresponding author
| |
Collapse
|
3
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Bérard A, Levin M, Sadler T, Healy D. Selective Serotonin Reuptake Inhibitor Use During Pregnancy and Major Malformations: The Importance of Serotonin for Embryonic Development and the Effect of Serotonin Inhibition on the Occurrence of Malformations. Bioelectricity 2019; 1:18-29. [PMID: 34471805 DOI: 10.1089/bioe.2018.0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bioelectric signaling is transduced by neurotransmitter pathways in many cell types. One of the key mediators of bioelectric control mechanisms is serotonin, and its transporter SERT, which is targeted by a broad class of blocker drugs (selective serotonin reuptake inhibitors [SSRIs]). Studies showing an increased risk of multiple malformations associated with gestational use of SSRI have been accumulating but debate remains on whether SSRI as a class has the potential to generate these malformations. This review highlights the importance of serotonin for embryonic development; the effect of serotonin inhibition during early pregnancy on the occurrence of multiple diverse malformations that have been shown to occur in human pregnancies; that the risks outweigh the benefits of SSRI use during gestation in populations of mild to moderately depressed pregnant women, which encompass the majority of pregnant depressed women; and that the malformations seen in human pregnancies constitute a pattern of malformations consistent with the known mechanisms of action of SSRIs. We present at least three mechanisms by which SSRI can affect development. These studies highlight the relevance of basic bioelectric and neurotransmitter mechanism for biomedicine.
Collapse
Affiliation(s)
- Anick Bérard
- Faculty of Pharmacy, University of Montreal; Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology, Medford, Massachusetts
| | - Thomas Sadler
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah
| | - David Healy
- Department of Psychiatry, Hergest Unit, Bangor, United Kingdom
| |
Collapse
|
5
|
Blenau W, Daniel S, Balfanz S, Thamm M, Baumann A. Dm5-HT 2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster. Front Syst Neurosci 2017; 11:28. [PMID: 28553207 PMCID: PMC5425475 DOI: 10.3389/fnsys.2017.00028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Cologne Biocenter and Zoological Institute, University of CologneCologne, Germany
| | - Stöppler Daniel
- Department of NMR-Supported Structural Biology, Leibniz-Institut für Molekulare PharmakologieBerlin, Germany
| | - Sabine Balfanz
- Institute of Complex Systems - Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of WürzburgWürzburg, Germany
| | - Arnd Baumann
- Institute of Complex Systems - Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| |
Collapse
|
6
|
Field A, Xiang J, Anderson WR, Graham P, Pick L. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers. PLoS One 2016; 11:e0163128. [PMID: 27723822 PMCID: PMC5056698 DOI: 10.1371/journal.pone.0163128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern.
Collapse
Affiliation(s)
- Amanda Field
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Jie Xiang
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - W. Ray Anderson
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Patricia Graham
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lacy ME, Hutson MS. Amnioserosa development and function in Drosophila embryogenesis: Critical mechanical roles for an extraembryonic tissue. Dev Dyn 2016; 245:558-68. [PMID: 26878336 DOI: 10.1002/dvdy.24395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022] Open
Abstract
Despite being a short-lived, extraembryonic tissue, the amnioserosa plays critical roles in the major morphogenetic events of Drosophila embryogenesis. These roles involve both cellular mechanics and biochemical signaling. Its best-known role is in dorsal closure-well studied by both developmental biologists and biophysicists-but the amnioserosa is also important during earlier developmental stages. Here, we provide an overview of amnioserosa specification and its role in several key developmental stages: germ band extension, germ band retraction, and dorsal closure. We also compare embryonic development in Drosophila and its relative Megaselia to highlight how the amnioserosa and its roles have evolved. Placed in context, the amnioserosa provides a fascinating example of how signaling, mechanics, and morphogen patterns govern cell-type specification and subsequent morphogenetic changes in cell shape, orientation, and movement. Developmental Dynamics 245:558-568, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica E Lacy
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystems Research & Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
8
|
Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster. Neural Plast 2016; 2016:7291438. [PMID: 26989517 PMCID: PMC4773565 DOI: 10.1155/2016/7291438] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 01/13/2023] Open
Abstract
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.
Collapse
|
9
|
Glebov K, Voronezhskaya EE, Khabarova MY, Ivashkin E, Nezlin LP, Ponimaskin EG. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC DEVELOPMENTAL BIOLOGY 2014; 14:14. [PMID: 24625099 PMCID: PMC4007640 DOI: 10.1186/1471-213x-14-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/21/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT. RESULTS Larval development of H. trivolvis includes transition from premetamorphic to metamorphic stages and shares the main features of metamorphosis with free-swimming aquatic larvae. Three types of 5-HT receptors (5-HT1-, 5-HT4- and 5-HT7-like) are functionally active at premetamorphic (trochophore, veliger) and metamorphic (veliconcha) stages, and expression patterns of these receptors and respective G proteins undergo coordinated changes during development. Stimulation of these receptors modulated cAMP-dependent regulation of cell divisions. Expression of 5-HT4- and 5-HT7-like receptors and their downstream Gs protein was down-regulated during the transition of pre- to metamorphic stage, while expression of 5-HT1 -like receptor and its downstream Gi protein was upregulated. In accordance with relative amount of these receptors, stimulation of 5-HTRs at premetamorphic stages induces developmental retardation, while their stimulation at metamorphic stages induces developmental acceleration. CONCLUSIONS We present a novel molecular mechanism that underlies stage-specific changes in developmental tempo of H. trivolvis larvae in response to endogenous 5-HT produced by the neurons of the ASO. We suggest that consecutive changes in expression patterns of different receptors and their downstream partners in the course of larval development represent the molecular base of larval transition from premetamorphic (non-competent) to metamorphic (competent) state.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeni G Ponimaskin
- DFG-Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
| |
Collapse
|
10
|
Majeed ZR, Stacy A, Cooper RL. Pharmacological and genetic identification of serotonin receptor subtypes on Drosophila larval heart and aorta. J Comp Physiol B 2013; 184:205-19. [PMID: 24370737 DOI: 10.1007/s00360-013-0795-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/11/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
Abstract
Serotonin, 5-hydroxytryptamine (5-HT), plays various roles in the fruit fly, Drosophila melanogaster. Previous studies have shown that 5-HT modulates the heart rate in third instar larvae. However, the receptor subtypes that mediate 5-HT action in larval cardiac tissue had yet to be determined. In this study, various 5-HT agonists and antagonists were employed to determine which 5-HT receptor subtypes are responsible for the positive chronotropic effect by 5-HT. The pharmacological results demonstrate that a 5-HT2B agonist significantly increases the heart rate; however, 5-HT1A, 5-HT1B, and 5-HT7 agonists do not have a significant effect on the heart rate. Furthermore, 5-HT2 antagonist, ketanserin, markedly reduces the positive chronotropic effect of 5-HT in a dose-response manner. Furthermore, we employed genetic approaches to confirm the pharmacological results. For this purpose, we used RNA interference line to knock down 5-HT2ADro and also used 5-HT2ADro and 5-HT2BDro insertional mutation lines. The results show that 5-HT2ADro or 5-HT2BDro receptor mutations reduce the response of the heart to 5-HT. Given these results, we conclude that these 5-HT2 receptor subtypes are involved in the action of 5-HT on the heart rate in the larval stage.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology and Center for Muscle Biology, University of Kentucky, 675 Rose Street, Lexington, KY, 40506-0225, USA,
| | | | | |
Collapse
|
11
|
Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera). PLoS One 2013; 8:e82407. [PMID: 24324783 PMCID: PMC3855752 DOI: 10.1371/journal.pone.0082407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/23/2013] [Indexed: 11/27/2022] Open
Abstract
Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.
Collapse
|
12
|
Röser C, Jordan N, Balfanz S, Baumann A, Walz B, Baumann O, Blenau W. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina. PLoS One 2012; 7:e49459. [PMID: 23145175 PMCID: PMC3493529 DOI: 10.1371/journal.pone.0049459] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.
Collapse
Affiliation(s)
- Claudia Röser
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nadine Jordan
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Sabine Balfanz
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Bernd Walz
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| |
Collapse
|
13
|
Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 2012; 193:159-76. [PMID: 23086220 DOI: 10.1534/genetics.112.142042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.
Collapse
|
14
|
Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience 2012; 208:11-26. [PMID: 22361394 DOI: 10.1016/j.neuroscience.2012.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/19/2012] [Accepted: 02/07/2012] [Indexed: 01/19/2023]
Abstract
The central complex is a prominent set of midline neuropils in the insect brain, known to be a higher locomotor control center that integrates visual inputs and modulates motor outputs. It is composed of four major neuropil structures, the ellipsoid body (EB), fan-shaped body (FB), noduli (NO), and protocerebral bridge (PB). In Drosophila different types of central complex neurons have been shown to express multiple neuropeptides and neurotransmitters; however, the distribution of corresponding receptors is not known. Here, we have mapped metabotropic, G-protein-coupled receptors (GPCRs) of several neurotransmitters to neurons of the central complex. By combining immunocytochemistry with GAL4 driven green fluorescent protein, we examined the distribution patterns of six different GPCRs: two serotonin receptor subtypes (5-HT(1B) and 5-HT(7)), a dopamine receptor (DopR), the metabotropic GABA(B) receptor (GABA(B)R), the metabotropic glutamate receptor (DmGluR(A)) and a short neuropeptide F receptor (sNPFR1). Five of the six GPCRs were mapped to different neurons in the EB (sNPFR1 was not seen). Different layers of the FB express DopR, GABA(B)R, DmGluR(A,) and sNPFR1, whereas only GABA(B)R and DmGluR(A) were localized to the PB. Finally, strong expression of DopR and DmGluR(A) was detected in the NO. In most cases the distribution patterns of the GPCRs matched the expression of markers for their respective ligands. In some nonmatching regions it is likely that other types of dopamine and serotonin receptors or ionotropic GABA and glutamate receptors are expressed. Our data suggest that chemical signaling and signal modulation are diverse and highly complex in the different compartments and circuits of the Drosophila central complex. The information provided here, on receptor distribution, will be very useful for future analysis of functional circuits in the central complex, based on targeted interference with receptor expression.
Collapse
|
15
|
Blenau W, Thamm M. Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:381-394. [PMID: 21272662 DOI: 10.1016/j.asd.2011.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT(1) receptor of the honeybee Apis mellifera (Am5-HT(1A)) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Germany.
| | | |
Collapse
|
16
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
17
|
Simonova OB, Burdina NV. Morphogenetic movement of cells in embryogenesis of Drosophila melanogaster: Mechanism and genetic control. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409050038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Hou HY, Heffer A, Anderson WR, Liu J, Bowler T, Pick L. Stripy Ftz target genes are coordinately regulated by Ftz-F1. Dev Biol 2009; 335:442-53. [PMID: 19679121 DOI: 10.1016/j.ydbio.2009.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 07/26/2009] [Accepted: 08/03/2009] [Indexed: 01/12/2023]
Abstract
During development, cascades of regulatory genes act in a hierarchical fashion to subdivide the embryo into increasingly specified body regions. This has been best characterized in Drosophila, where genes encoding regulatory transcription factors form a network to direct the development of the basic segmented body plan. The pair-rule genes are pivotal in this process as they are responsible for the first subdivision of the embryo into repeated metameric units. The Drosophila pair-rule gene fushi tarazu (ftz) is a derived Hox gene expressed in and required for the development of alternate parasegments. Previous studies suggested that Ftz achieves its distinct regulatory specificity as a segmentation protein by interacting with a ubiquitously expressed cofactor, the nuclear receptor Ftz-F1. However, the downstream target genes regulated by Ftz and other pair-rule genes to direct segment formation are not known. In this study, we selected candidate Ftz targets by virtue of their early expression in Ftz-like stripes. This identified two new Ftz target genes, drumstick (drm) and no ocelli (noc), and confirmed that Ftz regulates a serotonin receptor (5-HT2). These are the earliest Ftz targets identified to date and all are coordinately regulated by Ftz-F1. Engrailed (En), the best-characterized Ftz/Ftz-F1 downstream target, is not an intermediate in regulation. The drm genomic region harbors two separate seven-stripe enhancers, identified by virtue of predicted Ftz-F1 binding sites, and these sites are necessary for stripe expression in vivo. We propose that pair-rule genes, exemplified by Ftz/Ftz-F1, promote segmentation by acting at different hierarchical levels, regulating first, other segmentation genes; second, other regulatory genes that in turn control specific cellular processes such as tissue differentiation; and, third, 'segmentation realizator genes' that are directly involved in morphogenesis.
Collapse
Affiliation(s)
- Hui Ying Hou
- Department of Entomology, University of Maryland, College Park, 20742, USA
| | | | | | | | | | | |
Collapse
|
19
|
Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Genetics 2008; 181:525-41. [PMID: 19033154 DOI: 10.1534/genetics.108.094110] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.
Collapse
|