1
|
Wong HN, Chen T, Wang PJ, Holzman LB. ARF6, a component of intercellular bridges, is essential for spermatogenesis in mice. Dev Biol 2024; 508:46-63. [PMID: 38242343 PMCID: PMC10979378 DOI: 10.1016/j.ydbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Male germ cells are connected by intercellular bridges (ICBs) in a syncytium due to incomplete cytokinesis. Syncytium is thought to be important for synchronized germ cell development by interchange of cytoplasmic factors via ICBs. Mammalian ADP-ribosylation factor 6 (ARF6) is a small GTPase that is involved in many cellular mechanisms including but not limited to regulating cellular structure, motility, vesicle trafficking and cytokinesis. ARF6 localizes to ICBs in spermatogonia and spermatocytes in mice. Here we report that mice with global depletion of ARF6 in adulthood using Ubc-CreERT2 display no observable phenotypes but are male sterile. ARF6-deficient males display a progressive loss of germ cells, including LIN28A-expressing spermatogonia, and ultimately develop Sertoli-cell-only syndrome. Specifically, intercellular bridges are lost in ARF6-deficient testis. Furthermore, germ cell-specific inactivation using the Ddx4-CreERT2 results in the same testicular morphological phenotype, showing the germ cell-intrinsic requirement of ARF6. Therefore, ARF6 is essential for spermatogenesis in mice and this function is conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Hetty N Wong
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tingfang Chen
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Hohjoh H, Horikawa I, Nakagawa K, Segi-Nishida E, Hasegawa H. Induced mRNA expression of matrix metalloproteinases Mmp-3, Mmp-12, and Mmp-13 in the infarct cerebral cortex of photothrombosis model mice. Neurosci Lett 2020; 739:135406. [PMID: 32987131 DOI: 10.1016/j.neulet.2020.135406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
A strong therapeutic target of ischemic stroke is controlling brain inflammation. Recent studies have implicated the critical role of C-C chemokine receptor 5 (CCR5) in neuroinflammation during ischemic stroke. It has been reported that the expression of the matrix metalloproteinases, MMP-3, MMP-12, and MMP-13, is controlled by CCR5; however, their expressional regulation in the infarct brain has not been clearly understood. This study investigated the mRNA expression of Mmp-3, -12, and -13 in the ischemic cerebral cortex of photothrombosis mouse model. The three Mmps were highly upregulated in the early stages of ischemic stroke and were expressed in different types of cells. Mmp-3 and Mmp-13 were expressed in blood vessel endothelial cells after ischemia-induction, whereas Mmp-12 was expressed in activated microglia. The expression of Mmp-13 in resting microglia and in neurons of uninjured cerebral cortex was lost in the infarct region. Therefore, the MMPs responding to CCR5 are differentially regulated during ischemic stroke.
Collapse
Affiliation(s)
- Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Io Horikawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
3
|
Chomphoo S, Sakagami H, Kondo H, Hipkaeo W. Discrete localization patterns of Arf6, and its activators EFA6A and BRAG2, and its effector PIP5kinaseγ on myofibrils of myotubes and plasma membranes of myoblasts in developing skeletal muscles of mice. Acta Histochem 2020; 122:151513. [PMID: 32059926 DOI: 10.1016/j.acthis.2020.151513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Arf6 (ADP ribosylation factor 6), activated by Arf-GEF (guanine nucleoside exchange factor), is involved in the membrane trafficking and actin-remodeling which are critical for maintenance of cell organization and activity and for fusion of myoblasts to form myotubes/myofibers. EFA6A (exchange factor for Arf6 type A) and BRAG2 (brefeldin A-resistant Arf-GEF 2) represent members of discrete subfamilies of Arf-GEF, while PIP5Kγ (phosphatidylinositol4-phosphate5-kinase γ) produces PI 4,5-bisphosphate (PIP2) and it is target for Arf6. In the present study, immunoreactive bands for Arf6, EFA6A, BRAG2 and PIP5Kγ were detected in immunoblots of skeletal muscle homogenates of mice at E18D (embryonic day 18), while the bands for Arf6, EFA6A and PIP5Kγ were reduced in density and no significant bands for BRAG2 were discerned at P1D (postnatal 1 day). No immunoblot bands for any of the molecules were eventually detected in skeletal fibers of adult mice. Immunoreactivities for endogenous Arf6, EFA6A and PIP5Kγ were visualized using immuno-light microscopy localized as periodic striations running perpendicular to the longitudinal axes of skeletal muscle fibers of mice at E18D and P1D. All the striations were co-immunoreactive for β-actin in double immunofluorescence microscopy, and the immunoreactivities were confined to thin myofilaments at sarcomeric I-domains in immuno-electron microscopy. On the other hand, immunoreactivities for Arf6, BRAG2 and PIP5Kγ were conspicuous on plasmalemma of myoblasts at E14D, while immunoreactivity for EFA6A was already distinct in striations perpendicular to myofibrils in myotubes at E14D. The present findings suggest three possibilities: involvement of EFA6A-activated Arf6 together with PIP5Kγ in maturation of myofibrils, movement of Arf6 and PIP5Kγ from the plasmalemma of myoblasts to myofibrils of myotubes, and that of BRAG2 to the cytoplasm of myotubes; and further a function of EFA6A independent of the activation of Arf6 in immature myofibrils. In addition, the involvement of Arf6, BRAG2 and PIP5Kγ in the fusion of myoblasts into myotubes was supported by the present finding.
Collapse
Affiliation(s)
- Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Chomphoo S, Pakkarato S, Sawatpanich T, Sakagami H, Kondo H, Hipkaeo W. Localization of EFA6 (exchange factor for ARF6) isoform D in steroidogenic testicular Leydig cells of adult mice. Acta Histochem 2018; 120:263-268. [PMID: 29496264 DOI: 10.1016/j.acthis.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/03/2018] [Accepted: 02/21/2018] [Indexed: 11/19/2022]
Abstract
EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP and the resulting activated form of Arf6 is involved in the membrane trafficking and actin remodeling of cells. Our previous study has shown the selective expression/localization of EFA6D in steroidogenic adrenocortical cells in situ of adult mice. In view of the previous finding, the present study was undertaken to examine its localization in mouse Leydig cells representing another steroidogenic cell species in order to further support the possible involvement of the EFA6/Arf6 cascade via membrane trafficking in the regulation of steroidogenesis and/or secretion. A distinct band for EFA6D with the same size as that of the brain was detected in the testis of adult mice. In immuno-light microscopy, immunoreactivity for EFA6D was seen throughout the cytoplasm in most Leydig cells without any distinct accumulation along the plasmalemma. Lack of immunoreactivity for EFA6D was seen in the seminiferous tubular epithelium. In immuno-electron microscopy, the immune-labeling was seen in sporadic/focal patterns on plasma membranes and some vesicles and vacuoles subjacent to the plasma membranes. More constant and rather predominant is the labeling on numerous mitochondria. No immuno-labeling was seen in lipid droplets. The present study suggests that EFA6D is somehow involved in regulation of the synthesis and/or secretion of testosterone through the membrane-traffic by activation of Arf6. In addition, EFA6D is suggested to play in mitochondria some yet unidentified roles rather independent of Arf6-activation, which remains to be elucidated.
Collapse
Affiliation(s)
- Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sawetree Pakkarato
- Department of Social Sciences, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Sura Narai Rd, Nai-muang, Muang, Nakhon Ratchasima 30000, Thailand
| | - Tarinee Sawatpanich
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Tokyo, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
ACAP3, the GTPase-activating protein specific to the small GTPase Arf6, regulates neuronal migration in the developing cerebral cortex. Biochem Biophys Res Commun 2017; 493:1089-1094. [PMID: 28919417 DOI: 10.1016/j.bbrc.2017.09.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
Abstract
The GTPase-activating protein (GAP) specific to the small GTPase Arf6, ACAP3, is known to regulate morphogenesis of neurons in vitro. However, physiological significance of ACAP3 in the brain development in vivo remains unclear. Here, we show that ACAP3 is involved in neuronal migration in the developing cerebral cortex of mice. Knockdown of ACAP3 in the developing cortical neurons of mice in utero significantly abrogated neuronal migration in the cortical layer, which was restored by ectopic expression of wild type of ACAP3, but not by its GAP-inactive mutant. Furthermore, morphological changes of neurons during migration in the cortical layer were impeded in ACAP3-knocked-down cortical neurons. These results provide evidence that ACAP3 plays a crucial role in migration of cortical neurons by regulating their morphological change during development of cerebral cortex.
Collapse
|
6
|
Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Sci Rep 2017; 7:11431. [PMID: 28900118 PMCID: PMC5595869 DOI: 10.1038/s41598-017-11240-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/21/2017] [Indexed: 11/08/2022] Open
Abstract
The small GTPase Arf6 plays pivotal roles in a wide variety of cellular events such as endocytosis, exocytosis, and actin cytoskeleton reorganization. However, the physiological functions of Arf6 at the whole animal level have not yet been thoroughly understood. Here, we show that Arf6 regulates developmental and tumor lymphangiogenesis in mice. Lymphatic endothelial cell (LEC)-specific Arf6 conditional knockout (LEC-Arf6 cKO) mouse embryos exhibit severe skin edema and impairment in the formation of lymphatic vessel network at the mid-gestation stage. Knockdown of Arf6 in human LECs inhibits in vitro capillary tube formation and directed cell migration induced by vascular endothelial growth factor-C (VEGF-C) by inhibiting VEGF-C-induced internalization of β1 integrin. Finally, we found that LEC-Arf6 cKO mice transplanted with B16 melanoma cells attenuated tumor lymphangiogenesis and progression. Collectively, these results demonstrate that Arf6 in LECs plays a crucial role in physiological and pathological lymphangiogenesis.
Collapse
|
7
|
ARF6 mediates nephrin tyrosine phosphorylation-induced podocyte cellular dynamics. PLoS One 2017; 12:e0184575. [PMID: 28880939 PMCID: PMC5589247 DOI: 10.1371/journal.pone.0184575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/26/2017] [Indexed: 01/10/2023] Open
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase necessary for regulating cellular structure, motility, and vesicle trafficking. In several cellular systems, ARF6 was shown to regulate actin dynamics in coordination with Rac1, a Rho small GTPase. We examined the function of ARF6 in the kidney podocyte because Rac1 was implicated in kidney diseases involving this cell. We found that ARF6 expression was enriched in human podocytes and that it modulated podocyte cytoskeletal dynamics through a functional interaction with nephrin, an intercellular junction protein necessary for podocyte injury-induced signaling requiring activation by tyrosine phosphorylation of its cytoplasmic domain. ARF6 was necessary for nephrin activation-induced ruffling and focal adhesion turnover, possibly by altering Rac1 activity. In podocyte-specific Arf6 (ARF6_PodKO) knockout mice, ARF6 deficiency did not result in a spontaneous kidney developmental phenotype or proteinuria after aging. However, ARF6_PodKO mice exhibited distinct phenotypes in two in vivo glomerular injury models. In the protamine sulfate perfusion model, which induced acute podocyte effacement, ARF6_PodKO mice were protected from podocyte effacement. In the nephrotoxic serum nephritis model, which induced immune-complex mediated injury, ARF6_PodKO mice exhibited aggravated proteinuria. Together, these observations suggest that while ARF6 is necessary for nephrin tyrosine phosphorylation-induced cytoskeletal dynamics in cultured podocytes, ARF6 has pleotropic podocyte roles in vivo, where glomerular injury-specific mechanisms might activate distinct signaling pathways that dictate whether ARF6 activity is beneficial or deleterious for maintaining the integrity of the glomerular filtration barrier.
Collapse
|
8
|
Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, Fukaya M, Sakagami H. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol 2017; 148:577-596. [PMID: 28748255 DOI: 10.1007/s00418-017-1599-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 01/30/2023]
Abstract
ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates endosomal trafficking and actin cytoskeleton remodeling. In the present study, we comprehensively examined the cellular and subcellular localization of Arf6 in adult mouse peripheral tissues by immunofluorescence and immunoelectron microscopy using the heat-induced antigen retrieval method with Tris-EDTA buffer (pH 9.0). Marked immunolabeling of Arf6 was observed particularly in epithelial cells of several tissues including the esophagus, stomach, small and large intestines, trachea, kidney, epididymis, oviduct, and uterus. In most epithelial cells of simple or pseudostratified epithelia, Arf6 exhibited predominant localization to the basolateral membrane and a subpopulation of endosomes. At an electron microscopic level, Arf6 was localized along the basolateral membrane, with dense accumulation at interdigitating processes and infoldings. Arf6 was present in a ring-like appearance at intercellular bridges in spermatogonia and spermatocytes in the testis and at the Flemming body of cytokinetic somatic cells in the ovarian follicle, thymus, and spleen. The present study provides anatomical clues to help understand the physiological roles of Arf6 at the whole animal level.
Collapse
Affiliation(s)
- Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Momoko Mori
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusuke Sawane
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomoko Niimura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Akiko Ito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
9
|
The small G protein Arf6 expressed in keratinocytes by HGF stimulation is a regulator for skin wound healing. Sci Rep 2017; 7:46649. [PMID: 28429746 PMCID: PMC5399375 DOI: 10.1038/srep46649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/24/2017] [Indexed: 12/21/2022] Open
Abstract
The earlier step of cutaneous wound healing process, re-epithelialization of the wounded skin, is triggered by a variety of growth factors. However, molecular mechanisms through which growth factors trigger skin wound healing are less understood. Here, we demonstrate that hepatocyte growth factor (HGF)/c-Met signaling-induced expression of the small G protein Arf6 mRNA in keratinocytes is essential for the skin wound healing. Arf6 mRNA expression was dramatically induced in keratinocytes at the wounded skin, which was specifically suppressed by the c-Met inhibitor. Wound healing of the skin was significantly delayed in keratinocyte-specific Arf6 conditional knockout mice. Furthermore, Arf6 deletion from keratinocytes remarkably suppressed HGF-stimulated cell migration and peripheral membrane ruffle formation, but did not affect skin morphology and proliferation/differentiation of keratinocytes. These results are consistent with the notion that Arf6 expressed in skin keratinocytes through the HGF/c-Met signaling pathway in response to skin wounding plays an important role in skin wound healing by regulating membrane dynamics-based motogenic cellular function of keratinocytes.
Collapse
|
10
|
ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. Biochem J 2016; 473:2591-602. [PMID: 27330119 DOI: 10.1042/bcj20160183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 01/30/2023]
Abstract
ACAP3 (ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 3) belongs to the ACAP family of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). However, its specificity to Arf isoforms and physiological functions remain unclear. In the present study, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild-type ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK (human embryonic kidney)-293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild-type, GTP- or GDP-locked mutant Arf6. Thus cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine-nucleotide-exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons.
Collapse
|
11
|
Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 2016; 7:47-53. [PMID: 26909552 PMCID: PMC4905277 DOI: 10.1080/21541248.2016.1154640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although several lines of evidence have shown that the small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in cancer progression of several types of cancers, little is known about the functions of Arf6 in tumor microenvironment. We demonstrated that Arf6 in vascular endothelial cells (VECs) plays a crucial role in tumor angiogenesis and growth using endothelial cell-specific Arf6 conditional knockout mice into which B16 melanoma and Lewis lung carcinoma cells were implanted. It was also found that Arf6 in VECs positively regulates hepatocyte growth factor (HGF)-induced β1 integrin recycling, which is a critical event for tumor angiogenesis by promoting cell migration. Importantly, pharmacological inhibition of HGF-induced Arf6 activation significantly suppresses tumor angiogenesis and growth in mice, suggesting that Arf6 signaling would be a potential target for anti-angiogenic therapy. In this manuscript, we summarize the multiple roles of Arf6 in cancer progression, particularly in cancer cell invasion/metastasis and our recent findings on tumor angiogenesis, and discuss a possible approach to develop innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Tsunaki Hongu
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yohei Yamauchi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yuji Funakoshi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Naohiro Katagiri
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Norihiko Ohbayashi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yasunori Kanaho
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
12
|
Okada R, Yamauchi Y, Hongu T, Funakoshi Y, Ohbayashi N, Hasegawa H, Kanaho Y. Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis. Sci Rep 2015; 5:14919. [PMID: 26503427 PMCID: PMC4621509 DOI: 10.1038/srep14919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
The small G protein Arf6 and the GTPase dynamin2 (Dyn2) play key roles in clathrin-mediated endocytosis (CME). However, their functional relationship remains obscure. Here, we show that Arf6 functions as a downstream molecule of Dyn2 in CME. Wild type of Dyn2 overexpressed in HeLa cells markedly activates Arf6, while a GTPase-lacking Dyn2 mutant does not. Of the Arf6-specific guanine nucleotide exchange factors, EFA6A, EFA6B, and EFA6D specifically interact with Dyn2. Furthermore, overexpression of dominant negative mutants or knockdown of EFA6B and EFA6D significantly inhibit Dyn2-induced Arf6 activation. Finally, overexpression of the binding region peptide of EFA6B for Dyn2 or knockdown of EFA6B and EFA6D significantly suppresses clathrin-mediated transferrin uptake. These results provide evidence for a novel Arf6 activation mechanism by Dyn2 through EFA6B and EFA6D in CME in a manner dependent upon the GTPase activity of Dyn2.
Collapse
Affiliation(s)
- Risa Okada
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yohei Yamauchi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| |
Collapse
|
13
|
Hanai A, Ohgi M, Yagi C, Ueda T, Shin HW, Nakayama K. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J Biochem 2015; 159:201-8. [PMID: 26330566 DOI: 10.1093/jb/mvv088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Small GTPases play important roles in various aspects of cell division as well as membrane trafficking. We and others previously showed that ADP-ribosylation factor 6 (Arf6) is locally activated around the ingressing cleavage furrow and recruited to the Flemming body in late cytokinesis phases, and involved in faithful completion of cytokinesis. However, knockout of the Arf6 gene or Arf6 depletion by siRNAs did not drastically influence cytokinesis. We here show that, in addition to Arf6, Class I Arfs (Arf1 and Arf3) are localized to the Flemming body, and that double knockdown of Arf1 and Arf3 moderately increases the proportion of multinucleate cells and simultaneous knockdown of Arf1, Arf3 and Arf6 leads to severe cytokinesis defects. These observations indicate that Arf1 and Arf3 as well as Arf6 play important roles in cytokinesis. We further show that EFA6 (exchange factor for Arf6) activates not only Arf6 but also Arf1 in the cell. Taken together with our previous data, these Arf GTPases are likely to be locally activated by EFA6 and in turn targeted to the Flemming body to complete cytokinesis.
Collapse
Affiliation(s)
- Ayako Hanai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Ohgi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chikako Yagi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoko Ueda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays important roles in membrane dynamics-based neuronal cell events such as neurite outgrowth and spine formation. However, physiological functions of Arf6 in the nervous system at whole animal level have not yet been explored. We have recently generated conditional knockout mice lacking Arf6 in neurons or oligodendrocytes of central nervous system (CNS) or both cell lineages, and analyzed them. We found that ablation of Arf6 gene from neurons, but not from oligodendrocytes, caused the defect in axon myelination at the fimbria of hippocampus (Fim) and corpus callosum (CC). We also found that migration of oligodendrocyte precursor cells (OPCs) from the subventricular zone to the Fim and CC in mice lacking Arf6 in neurons was impaired. Finally, it was found that secretion of fibroblast growth factor-2 (FGF-2), a guidance factor for OPC migration, from hippocampi lacking Arf6 was impaired. Collectively, these findings demonstrate that Arf6 in neurons of the CNS plays an important role in OPC migration by regulating secretion of FGF-2 from neurons, thereby contributing to the axon myelination. Here, we discuss our current understanding of physiological functions of Arf6 in the nervous system.
Collapse
Affiliation(s)
- Masahiro Akiyama
- a Faculty of Medicine and Graduate School of Comprehensive Human Sciences; Department of Physiological Chemistry ; University of Tsukuba ; Tennodai, Tsukuba , Japan
| | | |
Collapse
|
15
|
Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial β1 integrin recycling. Nat Commun 2015; 6:7925. [PMID: 26239146 DOI: 10.1038/ncomms8925] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/25/2015] [Indexed: 01/26/2023] Open
Abstract
Anti-angiogenic drugs targeting vascular endothelial cell growth factor receptor have provided modest clinical benefit, in part, owing to the actions of additional angiogenic factors that stimulate tumour neoangiogenesis in parallel. To overcome this redundancy, approaches targeting these other signalling pathways are required. Here we show, using endothelial cell-targeted mice, that the small GTPase Arf6 is required for hepatocyte growth factor (HGF)-induced tumour neoangiogenesis and growth. Arf6 deletion from endothelial cells abolishes HGF-stimulated β1 integrin recycling. Pharmacological inhibition of the Arf6 guanine nucleotide exchange factor (GEF) Grp1 efficiently suppresses tumour vascularization and growth. Grp1 as well as other Arf6 GEFs, such as GEP100, EFA6B and EFA6D, regulates HGF-stimulated β1 integrin recycling. These findings provide insight into the mechanism of HGF-induced tumour angiogenesis and offer the possibility that targeting the HGF-activated Arf6 signalling pathway may synergize with existing anti-angiogenic drugs to improve clinical outcomes.
Collapse
|
16
|
Trans-regulation of oligodendrocyte myelination by neurons through small GTPase Arf6-regulated secretion of fibroblast growth factor-2. Nat Commun 2014; 5:4744. [PMID: 25144208 DOI: 10.1038/ncomms5744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Abstract
The small G protein ADP-ribosylation factor 6 (Arf6) plays important roles in a wide variety of membrane dynamics-based cellular events such as neurite outgrowth and spine formation in vitro. However, little is known about physiological function of Arf6 in vivo. Here we generate conditional knockout mice lacking Arf6 in neurons, oligodendrocytes, or both cell lineages, and unexpectedly find that Arf6 expression in neurons, but not in oligodendrocytes, is crucial for oligodendrocyte myelination in the hippocampal fimbria and the corpus callosum during development, and that this is through the regulation of secretion of fibroblast growth factor-2, a guidance factor for migration of oligodendrocyte precursor cells (OPCs). These results suggest that Arf6 in neurons plays an important role in OPC migration through regulation of FGF-2 secretion during neuronal development.
Collapse
|
17
|
Kanaho Y, Unoki T. Regulation and functions of the lipid kinase PIP5K g661 at synapses. Adv Biol Regul 2012; 52:59-65. [PMID: 21945523 DOI: 10.1016/j.advenzreg.2011.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Ibaraki 305-8575, Japan.
| | | |
Collapse
|
18
|
Shteyn E, Pigati L, Fölsch H. Arf6 regulates AP-1B-dependent sorting in polarized epithelial cells. J Cell Biol 2011; 194:873-87. [PMID: 21911479 PMCID: PMC3207291 DOI: 10.1083/jcb.201106010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/12/2011] [Indexed: 11/22/2022] Open
Abstract
The epithelial cell-specific clathrin adaptor complex AP-1B facilitates the sorting of various transmembrane proteins from recycling endosomes (REs) to the basolateral plasma membrane. Despite AP-1B's clear importance in polarized epithelial cells, we still do not fully understand how AP-1B orchestrates basolateral targeting. Here we identify the ADP-ribosylation factor 6 (Arf6) as an important regulator of AP-1B. We show that activated Arf6 pulled down AP-1B in vitro. Furthermore, interfering with Arf6 function through overexpression of dominant-active Arf6Q67L or dominant-negative Arf6D125N, as well as depletion of Arf6 with short hairpin RNA (shRNA), led to apical missorting of AP-1B-dependent cargos. In agreement with these data, we found that Arf6 colocalized with AP-1B and transferrin receptor (TfnR) in REs. In addition, we observed specific recruitment of AP-1B into Arf6-induced membrane ruffles in nonpolarized cells. We conclude that activated Arf6 directs membrane recruitment of AP-1B, thus regulating AP-1B's functions in polarized epithelial cells.
Collapse
Affiliation(s)
- Elina Shteyn
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|