1
|
Villequey C, Zurmühl SS, Cramer CN, Bhusan B, Andersen B, Ren Q, Liu H, Qu X, Yang Y, Pan J, Chen Q, Münzel M. An efficient mRNA display protocol yields potent bicyclic peptide inhibitors for FGFR3c: outperforming linear and monocyclic formats in affinity and stability. Chem Sci 2024; 15:6122-6129. [PMID: 38665530 PMCID: PMC11040643 DOI: 10.1039/d3sc04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclization has positioned itself as a powerful method for engineering potent peptide drug candidates. Introducing one or multiple cyclizations is a common strategy to improve properties such as affinity, bioavailability and proteolytic stability. Consequently, methodologies to create large libraries of polycyclic peptides by phage or mRNA display have emerged, allowing the rapid identification of binders to virtually any target. Yet, within those libraries, the performance of linear vs. mono- or bicyclic peptides has rarely been studied. Indeed, a key parameter to perform such a comparison is to use a display protocol and cyclization chemistry that enables the formation of all 3 formats in equal quality and diversity. Here, we developed a simple, efficient and fast mRNA display protocol which meets these criteria and can be used to generate highly diverse libraries of thioether cyclized polycyclic peptides. As a proof of concept, we selected peptides against fibroblast growth factor receptor 3c (FGFR3c) and compared the different formats regarding affinity, specificity, and human plasma stability. The peptides with the best KD's and stability were identified among bicyclic peptide hits, further strengthening the body of evidence pointing at the superiority of this class of molecules and providing functional and selective inhibitors of FGFR3c.
Collapse
Affiliation(s)
- Camille Villequey
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Silvana S Zurmühl
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Christian N Cramer
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Bhaskar Bhusan
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford UK
| | - Birgitte Andersen
- Global Drug Discovery, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Qianshen Ren
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Haimo Liu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Xinping Qu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Yang Yang
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Jia Pan
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Qiujia Chen
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Martin Münzel
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| |
Collapse
|
2
|
Dunkel H, Chaverra M, Bradley R, Lefcort F. FGF
signaling is required for chemokinesis and ventral migration of trunk neural crest cells. Dev Dyn 2020; 249:1077-1097. [DOI: 10.1002/dvdy.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haley Dunkel
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Martha Chaverra
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Roger Bradley
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Frances Lefcort
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| |
Collapse
|
3
|
Kumar S, Franz-Odendaal TA. Analysis of the FGFR spatiotemporal expression pattern within the chicken scleral ossicle system. Gene Expr Patterns 2018; 30:7-13. [DOI: 10.1016/j.gep.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
|
4
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
5
|
Sagnol S, Marchal S, Yang Y, Allemand F, de Santa Barbara P. Epithelial Splicing Regulatory Protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity. Dev Biol 2016; 414:207-18. [PMID: 27108394 DOI: 10.1016/j.ydbio.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
In vertebrates, stomach smooth muscle development is a complex process that involves the tight transcriptional or post-transcriptional regulation of different signalling pathways. Here, we identified the RNA-binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) as an early marker of developing and undifferentiated stomach mesenchyme. Using a gain-of-function approach, we found that in chicken embryos, sustained expression of ESRP1 impairs stomach smooth muscle cell (SMC) differentiation and FGFR2 splicing profile. ESRP1 overexpression in primary differentiated stomach SMCs induced their dedifferentiation, promoted specific-FGFR2b splicing and decreased FGFR2c-dependent activity. Moreover, co-expression of ESRP1 and RBPMS2, another RNA-binding protein that regulates SMC plasticity and Bone Morphogenetic Protein (BMP) pathway inhibition, synergistically promoted SMC dedifferentiation. Finally, we also demonstrated that ESRP1 interacts with RBPMS2 and that RBPMS2-mediated SMC dedifferentiation requires ESRP1. Altogether, these results show that ESRP1 is expressed also in undifferentiated stomach mesenchyme and demonstrate its role in SMC development and plasticity.
Collapse
Affiliation(s)
- Sébastien Sagnol
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Stéphane Marchal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Yinshan Yang
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, University of Montpellier, 34295 Montpellier cedex 5, France
| | - Pascal de Santa Barbara
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier cedex 5, France.
| |
Collapse
|
6
|
Ellis PS, Burbridge S, Soubes S, Ohyama K, Ben-Haim N, Chen C, Dale K, Shen MM, Constam D, Placzek M. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm. Development 2015; 142:3821-32. [PMID: 26417042 PMCID: PMC4712875 DOI: 10.1242/dev.119628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. Highlighted article: In the chick prechordal mesoderm, the Nodal precursor proNodal acts via a non-canonical route to inhibit BMP signalling and thus maintain Shh expression
Collapse
Affiliation(s)
- Pamela S Ellis
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sarah Burbridge
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sandrine Soubes
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Kyoji Ohyama
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Nadav Ben-Haim
- ISREC, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Epalinges CH 1066, Switzerland
| | - Canhe Chen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kim Dale
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael M Shen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Daniel Constam
- ISREC, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Epalinges CH 1066, Switzerland
| | - Marysia Placzek
- The Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
McGowan LD, Alaama RA, Striedter GF. FGF2 delays tectal neurogenesis, increases tectal cell numbers, and alters tectal lamination in embryonic chicks. PLoS One 2013; 8:e79949. [PMID: 24265789 PMCID: PMC3827156 DOI: 10.1371/journal.pone.0079949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/28/2013] [Indexed: 01/25/2023] Open
Abstract
Intraventricular injections of the fibroblast growth factor 2 (FGF2) are known to increase the size of the optic tectum in embryonic chicks. Here we show that this increase in tectum size is due to a delay in tectal neurogenesis, which by definition extends the proliferation of tectal progenitors. Specifically, we use cumulative labeling with the thymidine analog EdU to demonstrate that FGF2 treatment on embryonic day 4 (ED4) reduces the proportion and absolute number of unlabeled cells in the rostroventral tectum when EdU infusions are begun on ED5, as one would expect if FGF2 retards tectal neurogenesis. We also examined FGF2′s effect on neurogenesis in the caudodorsal tectum, which is born 2-3 days after the rostroventral tectum, by combining FGF2 treatment on ED4 with EDU infusions beginning on ED8. Again, FGF2 treatment reduced the proportion and number of EdU-negative (i.e., unlabeled) cells, consistent with a delay in neurogenesis. Collectively, these data indicate FGF2 in embryonic chicks delays neurogenesis throughout much of the tectum and continues to do so for several days after the FGF2 injection. One effect of this delay in neurogenesis is that tectal cell numbers more than double. In addition, tectal laminae that are born early in development become abnormally thin and cell-sparse after FGF2 treatment, whereas late-born layers remain unaffected. Combined with the results of prior work, these data indicate that FGF2 delays tectal neurogenesis and, thereby, triggers a cascade of changes in tectum size and morphology.
Collapse
Affiliation(s)
- Luke D. McGowan
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Roula A. Alaama
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
| | - Georg F. Striedter
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
8
|
Expansion, folding, and abnormal lamination of the chick optic tectum after intraventricular injections of FGF2. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10640-6. [PMID: 22723357 DOI: 10.1073/pnas.1201875109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative research has shown that evolutionary increases in brain region volumes often involve delays in neurogenesis. However, little is known about the influence of such changes on subsequent development. To get at this question, we injected FGF2--which delays cell cycle exit in mammalian neocortex--into the cerebral ventricles of chicks at embryonic day (ED) 4. This manipulation alters the development of the optic tectum dramatically. By ED7, the tectum of FGF2-treated birds is abnormally thin and has a reduced postmitotic layer, consistent with a delay in neurogenesis. FGF2 treatment also increases tectal volume and ventricular surface area, disturbs tectal lamination, and creates small discontinuities in the pia mater overlying the tectum. On ED12, the tectum is still larger in FGF2-treated embryos than in controls. However, lateral portions of the FGF2-treated tectum now exhibit volcano-like laminar disturbances that coincide with holes in the pia, and the caudomedial tectum exhibits prominent folds. To explain these observations, we propose that the tangential expansion of the ventricular surface in FGF2-treated tecta outpaces the expansion of the pial surface, creating abnormal mechanical stresses. Two alternative means of alleviating these stresses are tectal foliation and the formation of pial holes. The latter probably alter signaling gradients required for normal cell migration and may generate abnormal patterns of cerebrospinal fluid flow; both abnormalities would generate disturbances in tectal lamination. Overall, our findings suggest that evolutionary expansion of sheet-like, laminated brain regions requires a concomitant expansion of the pia mater.
Collapse
|
9
|
Kumar M, Chapman SC. Cloning and expression analysis of Fgf5, 6 and 7 during early chick development. Gene Expr Patterns 2012; 12:245-53. [PMID: 22634565 DOI: 10.1016/j.gep.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 02/02/2023]
Abstract
FGFs with similar sequences can play different roles depending on the model organisms examined. Determining these roles requires knowledge of spatio-temporal Fgf gene expression patterns. In this study, we report the cloning of chick Fgf5, 6 and 7, and examine their gene expression patterns by whole mount in situ hybridization. We show that Fgf5's spatio-temporally restricted expression pattern indicates a potentially novel role during inner ear development. Fgf6 and Fgf7, although belonging to different subfamilies with diverged sequences, are expressed in similar patterns within the mesoderm. Alignment of protein sequences and phylogenetic analysis demonstrate that FGF5 and FGF6 are highly conserved between chick, human, mouse and zebrafish. FGF7 is similarly conserved except for the zebrafish, which has considerably diverged.
Collapse
Affiliation(s)
- Megha Kumar
- Clemson University, Biological Sciences, Long Hall, Clemson, SC 29634, USA
| | | |
Collapse
|
10
|
Weisinger K, Kohl A, Kayam G, Monsonego-Ornan E, Sela-Donenfeld D. Expression of hindbrain boundary markers is regulated by FGF3. Biol Open 2011; 1:67-74. [PMID: 23213398 PMCID: PMC3507201 DOI: 10.1242/bio.2011032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compartment boundaries act as organizing centers that segregate adjacent areas into domains of gene expression and regulation, and control their distinct fates via the secretion of signalling factors. During hindbrain development, a specialized cell-population forms boundaries between rhombomeres. These boundary cells demonstrate unique morphological properties and express multiple genes that differs them from intra-rhombomeric cells. Yet, little is known regarding the mechanisms that controls the expression or function of these boundary markers.Multiple components of the FGF signaling system, including ligands, receptors, downstream effectors as well as proteoglycans are shown to localize to boundary cells in the chick hindbrain. These patterns raise the possibility that FGF signaling plays a role in regulating boundary properties. We provide evidence to the role of FGF signaling, particularly the boundary-derived FGF3, in regulating the expression of multiple markers at hindbrain boundaries. These findings enable further characterization of the unique boundary-cell population, and expose a new function for FGFs as regulators of boundary-gene expression in the chick hindbrain.
Collapse
|