1
|
Ferran JL, Puelles L. Atypical Course of the Habenulo-Interpeduncular Tract in Chick Embryos. J Comp Neurol 2024; 532:e25646. [PMID: 38961604 DOI: 10.1002/cne.25646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Classical studies of the avian diencephalon hardly mention the habenulo-interpeduncular tract (a.k.a. retroflex tract), although both the habenula (HB) (its origin) and the interpeduncular nuclear complex (its target) are present. Retroflex tract fibers were described at early embryonic stages but seem absent in the adult in routine stains. However, this tract is a salient diencephalic landmark in all other vertebrate lineages. It typically emerges out of the caudal HB, courses dorsoventrally across thalamic alar and basal plates just in front of the thalamo-pretectal boundary, and then sharply bends 90° caudalwards at paramedian basal plate levels (this is the "retroflexion"), to approach longitudinally via paramedian pretectum and midbrain the rostralmost hindbrain, specifically the prepontine median interpeduncular complex across isthmus and rhombomere 1. We systematize this habenulo-interpeduncular course into four parts named subhabenular, retrothalamic, tegmental, and interpeduncular. We reexamined the chicken habenulo-interpeduncular fibers at stages HH30 and HH35 (6.5- and 9-day incubation) by mapping them specifically with immunoreaction for BEN protein, a well-known marker. We found that only a small fraction of the stained retroflex tract fibers approaches the basal plate by coursing along the standard dorsoventral pathway in front of the thalamo-pretectal boundary. Many other habenular fibers instead diverge into atypical dispersed courses across the thalamic cell mass (implying alteration of the first subhabenular part of the standard course) before reaching the basal plate; this dispersion explains their invisibility. A significant number of such transthalamic habenular fibers cross orthogonally the zona limitans (ZLI) (the rostral thalamic boundary) and invade the caudal alar prethalamus. Here, they immediately descend dorsoventrally, just rostrally to the ZLI, until reaching the prethalamic basal plate, where they bend (retroflex) caudalwards, entering the thalamic basal paramedian area. These atypical fibers gradually fasciculate with the other groups of habenular efferent fibers in their final longitudinal approach to the hindbrain interpeduncular complex. We conclude that the poor visibility of this tract in birds is due to its dispersion into a diversity of atypical alternative routes, though all components eventually reach the interpeduncular complex. This case merits further analysis of the diverse permissive versus nonpermissive guidance mechanisms called into action, which partially correlate distinctly with successive diencephalic, mesencephalic, and hindbrain neuromeric fields and their boundaries.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Pascual Parrilla Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Pascual Parrilla Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain
| |
Collapse
|
2
|
Piacentino ML, Fasse AJ, Camacho-Avila A, Grabylnikov I, Bronner ME. SMPD3 expression is spatially regulated in the developing embryo by SOXE factors. Dev Biol 2024; 506:31-41. [PMID: 38052296 PMCID: PMC10872304 DOI: 10.1016/j.ydbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Aria J Fasse
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alexis Camacho-Avila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ilya Grabylnikov
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
3
|
Gupta S, Kawaguchi R, Heinrichs E, Gallardo S, Castellanos S, Mandric I, Novitch BG, Butler SJ. In vitro atlas of dorsal spinal interneurons reveals Wnt signaling as a critical regulator of progenitor expansion. Cell Rep 2022; 40:111119. [PMID: 35858555 PMCID: PMC9414195 DOI: 10.1016/j.celrep.2022.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Restoring sensation after injury or disease requires a reproducible method for generating large quantities of bona fide somatosensory interneurons. Toward this goal, we assess the mechanisms by which dorsal spinal interneurons (dIs; dI1-dI6) can be derived from mouse embryonic stem cells (mESCs). Using two developmentally relevant growth factors, retinoic acid (RA) and bone morphogenetic protein (BMP) 4, we recapitulate the complete in vivo program of dI differentiation through a neuromesodermal intermediate. Transcriptional profiling reveals that mESC-derived dIs strikingly resemble endogenous dIs, with the correct molecular and functional signatures. We further demonstrate that RA specifies dI4-dI6 fates through a default multipotential state, while the addition of BMP4 induces dI1-dI3 fates and activates Wnt signaling to enhance progenitor proliferation. Constitutively activating Wnt signaling permits the dramatic expansion of neural progenitor cultures. These cultures retain the capacity to differentiate into diverse populations of dIs, thereby providing a method of increasing neuronal yield.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Riki Kawaguchi
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Heinrichs
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Genetics and Genomics Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Salena Gallardo
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie Castellanos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; CIRM Bridges to Research Program, California State University, Northridge, Los Angeles, CA, USA
| | - Igor Mandric
- Department of Computer Science, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha J Butler
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Parker HJ, De Kumar B, Pushel I, Bronner ME, Krumlauf R. Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Dev Biol 2021; 479:61-76. [PMID: 34310923 DOI: 10.1016/j.ydbio.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
7
|
Tauran Y, Poulain S, Lereau-Bernier M, Danoy M, Shinohara M, Segard BD, Kato S, Kido T, Miyajima A, Sakai Y, Plessy C, Leclerc E. Analysis of the transcription factors and their regulatory roles during a step-by-step differentiation of induced pluripotent stem cells into hepatocyte-like cells. Mol Omics 2019; 15:383-398. [DOI: 10.1039/c9mo00122k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cells have been investigated through a sequential in vitro step-by-step differentiation into hepatocyte-like cells using nanoCAGE, an original method for promoters, transcription factors, and transcriptome analysis.
Collapse
|
8
|
Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, Yang N. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet 2018; 9:128. [PMID: 29755503 PMCID: PMC5932955 DOI: 10.3389/fgene.2018.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Egg weight (EW) is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS) in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80). Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb) in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A) can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1) and two genes (MEIS1 and SPRED2 on GGA3), which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW) and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.
Collapse
Affiliation(s)
- Zhuang Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyuan Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Engineering Research Center of Layer, Beijing, China
| | - Guangqi Li
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene. BMC Genomics 2014; 15:89. [PMID: 24484454 PMCID: PMC3912494 DOI: 10.1186/1471-2164-15-89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines.
Collapse
|
10
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
11
|
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 2013; 24:83-94. [DOI: 10.1016/j.semcdb.2012.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023]
|
12
|
Ohuchi H, Yamashita T, Tomonari S, Fujita-Yanagibayashi S, Sakai K, Noji S, Shichida Y. A non-mammalian type opsin 5 functions dually in the photoreceptive and non-photoreceptive organs of birds. PLoS One 2012; 7:e31534. [PMID: 22348098 PMCID: PMC3279408 DOI: 10.1371/journal.pone.0031534] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/09/2012] [Indexed: 11/23/2022] Open
Abstract
A mammalian type opsin 5 (neuropsin) is a recently identified ultraviolet (UV)-sensitive pigment of the retina and other photosensitive organs in birds. Two other opsin 5-related molecules have been found in the genomes of non-mammalian vertebrates. However, their functions have not been examined as yet. Here, we identify the molecular properties of a second avian opsin 5, cOpn5L2 (chicken opsin 5-like 2), and its localization in the post-hatch chicken. Spectrophotometric analysis and radionucleotide-binding assay have revealed that cOpn5L2 is a UV-sensitive bistable pigment that couples with the Gi subtype of guanine nucleotide-binding protein (G protein). As a bistable pigment, it also shows the direct binding ability to agonist all-trans-retinal to activate G protein. The absorption maxima of UV-light-absorbing and visible light-absorbing forms were 350 and 521 nm, respectively. Expression analysis showed relatively high expression of cOpn5L2 mRNA in the adrenal gland, which is not photoreceptive but an endocrine organ, while lower expression was found in the brain and retina. At the protein level, cOpn5L2 immunoreactive cells were present in the chromaffin cells of the adrenal gland. In the brain, cOpn5L2 immunoreactive cells were found in the paraventricular and supraoptic nuclei of the anterior hypothalamus, known for photoreceptive deep brain areas. In the retina, cOpn5L2 protein was localized to subsets of cells in the ganglion cell layer and the inner nuclear layer. These results suggest that the non-mammalian type opsin 5 (Opn5L2) functions as a second UV sensor in the photoreceptive organs, while it might function as chemosensor using its direct binding ability to agonist all-trans-retinal in non-photoreceptive organs such as the adrenal gland of birds.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Life Systems, Institute of Technology and Science, University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22-33. [PMID: 22305800 DOI: 10.1016/j.ydbio.2012.01.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
Abstract
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.
Collapse
Affiliation(s)
- Cécile Milet
- Institut Curie, INSERM U1021, CNRS, UMR 3347, F-91405 Orsay, France
| | | |
Collapse
|
14
|
Irimia M, Maeso I, Burguera D, Hidalgo-Sánchez M, Puelles L, Roy SW, Garcia-Fernàndez J, Ferran JL. Contrasting 5' and 3' evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures. Genome Biol Evol 2011; 3:551-64. [PMID: 21680890 PMCID: PMC3140891 DOI: 10.1093/gbe/evr056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organisms show striking differences in genome structure; however, the functional implications and fundamental forces that govern these differences remain obscure. The intron–exon organization of nuclear genes is involved in a particularly large variety of structures and functional roles. We performed a 22-species study of Meis/hth genes, intron-rich homeodomain-containing transcription factors involved in a wide range of developmental processes. Our study revealed three surprising results that suggest important and very different functions for Meis intron–exon structures. First, we find unexpected conservation across species of intron positions and lengths along most of the Meis locus. This contrasts with the high degree of structural divergence found in genome-wide studies and may attest to conserved regulatory elements residing within these conserved introns. Second, we find very different evolutionary histories for the 5′ and 3′ regions of the gene. The 5′-most 10 exons, which encode the highly conserved Meis domain and homeodomain, show striking conservation. By contrast, the 3′ of the gene, which encodes several domains implicated in transcriptional activation and response to cell signaling, shows a remarkably active evolutionary history, with diverse isoforms and frequent creation and loss of new exons and splice sites. This region-specific diversity suggests evolutionary “tinkering,” with alternative splicing allowing for more subtle regulation of protein function. Third, we find a large number of cases of convergent evolution in the 3′ region, including 1) parallel losses of ancestral coding sequence, 2) parallel gains of external and internal splice sites, and 3) recurrent truncation of C-terminal coding regions. These results attest to the importance of locus-specific splicing functions in differences in structural evolution across genes, as well as to commonalities of forces shaping the evolution of individual genes along different lineages.
Collapse
Affiliation(s)
- Manuel Irimia
- Department of Genetics, School of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Merchán P, Bardet SM, Puelles L, Ferran JL. Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos. Front Neuroanat 2011; 5:23. [PMID: 21503155 PMCID: PMC3074437 DOI: 10.3389/fnana.2011.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/23/2011] [Indexed: 01/08/2023] Open
Abstract
Regionalization of the central nervous system is controlled by local networks of transcription factors that establish and maintain the identities of neuroepithelial progenitor areas and their neuronal derivatives. The conserved cerebral Bauplan of vertebrates must result essentially from conserved patterns of developmentally expressed transcription factors. We have previously produced detailed molecular maps for the alar plate of prosomere 1 (the pretectal region) in chicken (Ferran et al., 2007, 2008, 2009). Here we compare the early molecular signature of the pretectum of two closely related avian species of the family Phasianidae, Coturnix japonica (Japanese quail) and Gallus gallus (chicken), aiming to test conservation of the described pattern at a microevolutionary level. We studied the developmental pretectal expression of Bhlhb4, Dbx1, Ebf1, Gata3, Gbx2, Lim1, Meis1, Meis2, Pax3, Pax6, Six3, Tal2, and Tcf7l2 (Tcf4) mRNA, using in situ hybridization, and PAX7 immunohistochemistry. The genoarchitectonic profile of individual pretectal domains and strata was produced, using comparable section planes. Remarkable conservation of the combinatorial genoarchitectonic code was observed, fundamented in a tripartite anteroposterior subdivision. However, we found that at corresponding developmental stages the pretectal region of G. gallus was approximately 30% larger than that of C. japonica, but seemed relatively less mature. Altogether, our results on a conserved genoarchitectonic pattern highlight the importance of early developmental gene networks that causally underlie the production of homologous derivatives in these two evolutionarily closely related species. The shared patterns probably apply to sauropsids in general, as well as to more distantly related vertebrate species.
Collapse
Affiliation(s)
- Paloma Merchán
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - Sylvia M. Bardet
- Unité de Génétique Moléculaire Animale, INRA UMR 1061, University of LimogesLimoges, France
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| |
Collapse
|