1
|
Tomasso A, Disela V, Longaker MT, Bartscherer K. Marvels of spiny mouse regeneration: cellular players and their interactions in restoring tissue architecture in mammals. Curr Opin Genet Dev 2024; 87:102228. [PMID: 39047585 DOI: 10.1016/j.gde.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Understanding the cellular and molecular determinants of mammalian tissue regeneration and repair is crucial for developing effective therapies that restore tissue architecture and function. In this review, we focus on the cell types involved in scarless wound response and regeneration of spiny mice (Acomys). Comparative -omics approaches with scar-prone mammals have revealed species-specific peculiarities in cellular behavior during the divergent healing trajectories. We discuss the developing views on which cell types engage in restoring the architecture of spiny mouse tissues through a co-ordinated spatiotemporal response to injury. While yet at the beginning of understanding how cells interact in these fascinating animals to regenerate tissues, spiny mice hold great promise for scar prevention and anti-fibrotic treatments.
Collapse
Affiliation(s)
- Antonio Tomasso
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA; Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@anto_tomasso
| | - Vanessa Disela
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@VDisela
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA. https://twitter.com/@LongakerLab
| | - Kerstin Bartscherer
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany.
| |
Collapse
|
2
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
3
|
Raymond MJ, McCusker CD. Making a new limb out of old cells: exploring endogenous cell reprogramming and its role during limb regeneration. Am J Physiol Cell Physiol 2024; 326:C505-C512. [PMID: 38105753 PMCID: PMC11192473 DOI: 10.1152/ajpcell.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| | - Catherine D McCusker
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Zhong J, Aires R, Tsissios G, Skoufa E, Brandt K, Sandoval-Guzmán T, Aztekin C. Multi-species atlas resolves an axolotl limb development and regeneration paradox. Nat Commun 2023; 14:6346. [PMID: 37816738 PMCID: PMC10564727 DOI: 10.1038/s41467-023-41944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Humans and other tetrapods are considered to require apical-ectodermal-ridge (AER) cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, a primary model organism for regeneration, remains controversial. Here, by leveraging a single-cell transcriptomics-based multi-species atlas, composed of axolotl, human, mouse, chicken, and frog cells, we first establish that axolotls contain cells with AER characteristics. Further analyses and spatial transcriptomics reveal that axolotl limbs do not fully re-form AER cells during regeneration. Moreover, the axolotl mesoderm displays part of the AER machinery, revealing a program for limb (re)growth. These results clarify the debate about the axolotl AER and the extent to which the limb developmental program is recapitulated during regeneration.
Collapse
Affiliation(s)
- Jixing Zhong
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Rita Aires
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Georgios Tsissios
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Evangelia Skoufa
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Kerstin Brandt
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Tomasso A, Koopmans T, Lijnzaad P, Bartscherer K, Seifert AW. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys). SCIENCE ADVANCES 2023; 9:eadf2331. [PMID: 37126559 PMCID: PMC10132760 DOI: 10.1126/sciadv.adf2331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although most mammals heal injured tissues and organs with scarring, spiny mice (Acomys) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring (Mus) and regenerating (Acomys) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
Collapse
Affiliation(s)
- Antonio Tomasso
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| | - Tim Koopmans
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Mahapatra C, Naik P, Swain SK, Mohapatra PP. Unravelling the limb regeneration mechanisms of Polypedates maculatus, a sub-tropical frog, by transcriptomics. BMC Genomics 2023; 24:122. [PMID: 36927452 PMCID: PMC10022135 DOI: 10.1186/s12864-023-09205-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Regeneration studies help to understand the strategies that replace a lost or damaged organ and provide insights into approaches followed in regenerative medicine and engineering. Amphibians regenerate their limbs effortlessly and are indispensable models to study limb regeneration. Xenopus and axolotl are the key models for studying limb regeneration but recent studies on non-model amphibians have revealed species specific differences in regeneration mechanisms. RESULTS The present study describes the de novo transcriptome of intact limbs and three-day post-amputation blastemas of tadpoles and froglets of the Asian tree frog Polypedates maculatus, a non-model amphibian species commonly found in India. Differential gene expression analysis between early tadpole and froglet limb blastemas discovered species-specific novel regulators of limb regeneration. The present study reports upregulation of proteoglycans, such as epiphycan, chondroadherin, hyaluronan and proteoglycan link protein 1, collagens 2,5,6, 9 and 11, several tumour suppressors and methyltransferases in the P. maculatus tadpole blastemas. Differential gene expression analysis between tadpole and froglet limbs revealed that in addition to the expression of larval-specific haemoglobin and glycoproteins, an upregulation of cysteine and serine protease inhibitors and downregulation of serine proteases, antioxidants, collagenases and inflammatory genes in the tadpole limbs were essential for creating an environment that would support regeneration. Dermal myeloid cells were GAG+, EPYC+, INMT+, LEF1+ and SALL4+ and seemed to migrate from the unamputated regions of the tadpole limb to the blastema. On the other hand, the myeloid cells of the froglet limb blastemas were few and probably contributed to sustained inflammation resulting in healing. CONCLUSIONS Studies on non-model amphibians give insights into alternate tactics for limb regeneration which can help devise a plethora of methods in regenerative medicine and engineering.
Collapse
Affiliation(s)
- Cuckoo Mahapatra
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India.
| | - Pranati Naik
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India
| | - Sumanta Kumar Swain
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India
| | | |
Collapse
|
7
|
Min S, Whited JL. Limb blastema formation: How much do we know at a genetic and epigenetic level? J Biol Chem 2023; 299:102858. [PMID: 36596359 PMCID: PMC9898764 DOI: 10.1016/j.jbc.2022.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Regeneration of missing body parts is an incredible ability which is present in a wide number of species. However, this regenerative capability varies among different organisms. Urodeles (salamanders) are able to completely regenerate limbs after amputation through the essential process of blastema formation. The blastema is a collection of relatively undifferentiated progenitor cells that proliferate and repattern to form the internal tissues of a regenerated limb. Understanding blastema formation in salamanders may enable comparative studies with other animals, including mammals, with more limited regenerative abilities and may inspire future therapeutic approaches in humans. This review focuses on the current state of knowledge about how limb blastemas form in salamanders, highlighting both the possible roles of epigenetic controls in this process as well as limitations to scientific understanding that present opportunities for research.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
8
|
Abstract
When the Accessory Limb Model (ALM) regenerative assay was first published by Endo, Bryant, and Gardiner in 2004, it provided a robust system for testing the cellular and molecular contributions during each of the basic steps of regeneration: the formation of the wound epithelium, neural induction of the apical epithelial cap, and the formation of a positional disparity between blastema cells. The basic ALM procedure was developed in the axolotl and involves deviating a limb nerve into a lateral wound and grafting skin from the opposing side of the limb axis into the site of injury. In this chapter, we will review the studies that lead to the conception of the ALM, as well as the studies that have followed the development of this assay. We will additionally describe in detail the standard ALM surgery and how to perform this surgery on different limb positions.
Collapse
Affiliation(s)
- Michael Raymond
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | | |
Collapse
|
9
|
Aztekin C. Tissues and Cell Types of Appendage Regeneration: A Detailed Look at the Wound Epidermis and Its Specialized Forms. Front Physiol 2021; 12:771040. [PMID: 34887777 PMCID: PMC8649801 DOI: 10.3389/fphys.2021.771040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.
Collapse
Affiliation(s)
- Can Aztekin
- Swiss Federal Institute of Technology Lausanne, EPFL, School of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
10
|
Rodgers AK, Smith JJ, Voss SR. Identification of immune and non-immune cells in regenerating axolotl limbs by single-cell sequencing. Exp Cell Res 2020; 394:112149. [PMID: 32562784 DOI: 10.1016/j.yexcr.2020.112149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Immune cells are known to be critical for successful limb regeneration in the axolotl (Ambystoma mexicanum), but many details regarding their identity, behavior, and function are yet to be resolved. We isolated peripheral leukocytes from the blood of adult axolotls and then created two samples for single-cell sequencing: 1) peripheral leukocytes (N = 7889) and 2) peripheral leukocytes with presumptive macrophages from the intraperitoneal cavity (N = 4998). Using k-means clustering, we identified 6 cell populations from each sample that presented gene expression patterns indicative of erythrocyte, thrombocyte, neutrophil, B-cell, T-cell, and myeloid cell populations. A seventh, presumptive macrophage cell population was identified uniquely from sample 2. We then isolated cells from amputated axolotl limbs at 1 and 6 days post-amputation (DPA) and performed single cell sequencing (N = 8272 and 9906 cells respectively) to identify immune and non-immune cell populations. Using k-means clustering, we identified 8 cell populations overall, with the majority of cells expressing erythrocyte-specific genes. Even though erythrocytes predominated, we used an unbiased approach to identify infiltrating neutrophil, macrophage, and lymphocyte populations at both time points. Additionally, populations expressing genes for epidermal cells, fibroblast-like cells, and endothelial cells were also identified. Consistent with results from previous experimental studies, neutrophils were more abundant at 1 DPA than 6 DPA, while macrophages and non-immune cells exhibited inverse abundance patterns. Of note, we identified a small population of fibroblast-like cells at 1 DPA that was represented by considerably more cells at 6 DPA. We hypothesize that these are early progenitor cells that give rise to the blastema. The enriched gene sets from our work will aid future single-cell investigations of immune cell diversity and function during axolotl limb regeneration.
Collapse
Affiliation(s)
- A K Rodgers
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - J J Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - S R Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Sibai M, Parlayan C, Tuğlu P, Öztürk G, Demircan T. Integrative Analysis of Axolotl Gene Expression Data from Regenerative and Wound Healing Limb Tissues. Sci Rep 2019; 9:20280. [PMID: 31889169 PMCID: PMC6937273 DOI: 10.1038/s41598-019-56829-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
Axolotl (Ambystoma mexicanum) is a urodele amphibian endowed with remarkable regenerative capacities manifested in scarless wound healing and restoration of amputated limbs, which makes it a powerful experimental model for regenerative biology and medicine. Previous studies have utilized microarrays and RNA-Seq technologies for detecting differentially expressed (DE) genes in different phases of the axolotl limb regeneration. However, sufficient consistency may be lacking due to statistical limitations arising from intra-laboratory analyses. This study aims to bridge such gaps by performing an integrative analysis of publicly available microarray and RNA-Seq data from axolotl limb samples having comparable study designs using the "merging" method. A total of 351 genes were found DE in regenerative samples compared to the control in data of both technologies, showing an adjusted p-value < 0.01 and log fold change magnitudes >1. Downstream analyses illustrated consistent correlations of the directionality of DE genes within and between data of both technologies, as well as concordance with the literature on regeneration related biological processes. qRT-PCR analysis validated the observed expression level differences of five of the top DE genes. Future studies may benefit from the utilized concept and approach for enhanced statistical power and robust discovery of biomarkers of regeneration.
Collapse
Affiliation(s)
- Mustafa Sibai
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Cüneyd Parlayan
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.
- Department of Biomedical Engineering, Faculty of Engineering, İstanbul Medipol University, Istanbul, Turkey.
| | - Pelin Tuğlu
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, İstanbul Medipol University, Istanbul, Turkey
| | - Turan Demircan
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.
- Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
12
|
Randal Voss S, Murrugarra D, Jensen TB, Monaghan JR. Transcriptional correlates of proximal-distal identify and regeneration timing in axolotl limbs. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:53-63. [PMID: 29107037 PMCID: PMC5920805 DOI: 10.1016/j.cbpc.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Cells within salamander limbs retain memories that inform the correct replacement of amputated tissues at different positions along the length of the arm, with proximal and distal amputations completing regeneration at similar times. We investigated the possibility that positional memory is associated with variation in transcript abundances along the proximal-distal limb axis. Transcripts were deeply sampled from Ambystoma mexicanum limbs at the time they were administered fore arm vs upper arm amputations, and at 19 post-amputation time points. After amputation and prior to regenerative outgrowth, genes typically expressed by differentiated muscle cells declined more rapidly in upper arms while cell cycle transcripts were expressed more highly. These and other expression patterns suggest upper arms undergo more robust tissue remodeling and cell proliferation responses after amputation, and thus provide an explanation for why the overall time to complete regeneration is similar for proximal and distal amputations. Additionally, we identified candidate positional memory genes that were expressed differently between fore and upper arms that encode a surprising number of epithelial proteins and a variety of cell surface, cell adhesion, and extracellular matrix molecules. Also, genes were discovered that exhibited different, bivariate patterns of gene expression between fore and upper arms, implicating dynamic transcriptional regulation for the first time in limb regeneration. Finally, 43 genes expressed differently between fore and upper arm samples showed similar transcriptional patterns during retinoic acid-induced reprogramming of fore arm blastema cells into upper arm cells. Our study provides new insights about the basis of positional information in regenerating axolotl limbs.
Collapse
Affiliation(s)
- S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY 40536, United States.
| | - David Murrugarra
- Department of Mathematics, University of Kentucky, Lexington, KY 40506, United States
| | - Tyler B Jensen
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
13
|
Murawala H, Ranadive I, Patel S, Desai I, Balakrishnan S. Protein expression pattern and analysis of differentially expressed peptides during various stages of tail regeneration in Hemidactylus flaviviridis. Mech Dev 2018; 150:1-9. [DOI: 10.1016/j.mod.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
|
14
|
Charbonneau AM, Roy S, Tran SD. Oral-Facial Tissue Reconstruction in the Regenerative Axolotl. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 326:489-502. [PMID: 28121390 DOI: 10.1002/jez.b.22723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 01/20/2023]
Abstract
Absence of large amounts of orofacial tissues caused by cancerous resections, congenital defects, or trauma results in sequelae such as dysphagia and noticeable scars. Oral-neck tissue regeneration was studied in the axolotl (regenerative amphibian) following a 2.5-mm punch biopsy that simultaneously removed skin, connective tissue, muscle, and cartilage in the tongue and intermandibular region. The untreated wound was studied macroscopically and histologically at 17 different time points ranging from 0 to180 days (N = 120 axolotls). At 12 hr, the wound's surface was smoothened and within 1mm, internal lingual muscular modifications occurred; at the same distance, between days 4-7 lingual muscle degradation was complete. Immunofluorescence indicates complete keratinocytes migration by 48 hr. These cells with epidermal Leydig cells, appearing yellow, lead the chin's deep tissue outgrowth until its closure on the 14th day. Regeneration speeds varied and peaked in time for each tissue, (1) deep chin 84.3 μm/hr from 24 to 96 hr, (2) superficial chin 71.1 μm/hr from 7-14 days, and (3) tongue 86.0 μm/hr between 48 hr and 7 days. Immunofluorescence to Col IV showed basement membrane reconnected between days 30-45 coinciding with the chin's dermal tissue's surface area recovery. New muscle appeared at 21 days and was always preceded by the formation of a collagen bed. Both chin tissues regain all surface area and practically all components while the lingual structure lacks some content but is generally similar to the original. The methodology and high-resolution observations described here are the first of its kind for this animal model and could serve as a basis for future studies in oral and facial regenerative research.
Collapse
Affiliation(s)
- Andre M Charbonneau
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Stephane Roy
- Department of Stomatology, University de Montreal, Montreal, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Satoh A, Makanae A, Nishimoto Y, Mitogawa K. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum. Dev Biol 2016; 417:114-25. [PMID: 27432514 DOI: 10.1016/j.ydbio.2016.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.
Collapse
Affiliation(s)
- Akira Satoh
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Aki Makanae
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yurie Nishimoto
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Kazumasa Mitogawa
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals. Nat Commun 2016; 7:11164. [PMID: 27109826 PMCID: PMC4848467 DOI: 10.1038/ncomms11164] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ 'healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury.
Collapse
|