1
|
Talley MJ, Nardini D, Ehrman LA, Lu QR, Waclaw RR. Distinct requirements for Tcf3 and Tcf12 during oligodendrocyte development in the mouse telencephalon. Neural Dev 2023; 18:5. [PMID: 37684687 PMCID: PMC10485956 DOI: 10.1186/s13064-023-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND E-proteins encoded by Tcf3, Tcf4, and Tcf12 are class I basic helix-loop-helix (bHLH) transcription factors (TFs) that are thought to be widely expressed during development. However, their function in the developing brain, specifically in the telencephalon remains an active area of research. Our study examines for the first time if combined loss of two E-proteins (Tcf3 and Tcf12) influence distinct cell fates and oligodendrocyte development in the mouse telencephalon. METHODS We generated Tcf3/12 double conditional knockouts (dcKOs) using Olig2Cre/+ or Olig1Cre/+ to overcome compensatory mechanisms between E-proteins and to understand the specific requirement for Tcf3 and Tcf12 in the ventral telencephalon and during oligodendrogenesis. We utilized a combination of in situ hybridization, immunohistochemistry, and immunofluorescence to address development of the telencephalon and oligodendrogenesis at embryonic and postnatal stages in Tcf3/12 dcKOs. RESULTS We show that the E-proteins Tcf3 and Tcf12 are expressed in progenitors of the embryonic telencephalon and throughout the oligodendrocyte lineage in the postnatal brain. Tcf3/12 dcKOs showed transient defects in progenitor cells with an enlarged medial ganglionic eminence (MGE) region which correlated with reduced generation of embryonic oligodendrocyte progenitor cells (OPCs) and increased expression of MGE interneuron genes. Postnatal Tcf3/12 dcKOs showed a recovery of OPCs but displayed a sustained reduction in mature oligodendrocytes (OLs). Interestingly, Tcf4 remained expressed in the dcKOs suggesting that it cannot compensate for the loss of Tcf3 and Tcf12. Generation of Tcf3/12 dcKOs with Olig1Cre/+ avoided the MGE morphology defect caused by Olig2Cre/+ but dcKOs still exhibited reduced embryonic OPCs and subsequent reduction in postnatal OLs. CONCLUSION Our data reveal that Tcf3 and Tcf12 play a role in controlling OPC versus cortical interneuron cell fate decisions in MGE progenitors in addition to playing roles in the generation of embryonic OPCs and differentiation of postnatal OLs in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
2
|
Coltogirone RA, Sherfinski EI, Dobler ZA, Peterson SN, Andlinger AR, Fadel LC, Patrick RL, Bergeron SA. Gsx2, but not Gsx1, is necessary for early forebrain patterning and long-term survival in zebrafish. Dev Dyn 2023; 252:377-399. [PMID: 36184733 PMCID: PMC9992111 DOI: 10.1002/dvdy.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Homeobox transcription factor encoding genes, genomic screen homeobox 1 and 2 (gsx1 and gsx2), are expressed during neurodevelopment in multiple vertebrates. However, we have limited knowledge of the dynamic expression of these genes through developmental time and the gene networks that they regulate in zebrafish. RESULTS We confirmed that gsx1 is expressed initially in the hindbrain and diencephalon and later in the optic tectum, pretectum, and cerebellar plate. gsx2 is expressed in the early telencephalon and later in the pallium and olfactory bulb. gsx1 and gsx2 are co-expressed in the hypothalamus, preoptic area, and hindbrain, however, rarely co-localize in the same cells. gsx1 and gsx2 mutant zebrafish were made with TALENs. gsx1 mutants exhibit stunted growth, however, they survive to adulthood and are fertile. gsx2 mutants experience swim bladder inflation failure that prevents survival. We also observed significantly reduced expression of multiple forebrain patterning distal-less homeobox genes in mutants, and expression of foxp2 was not significantly affected. CONCLUSIONS This work provides novel tools with which other target genes and functions of Gsx1 and Gsx2 can be characterized across the central nervous system to better understand the unique and overlapping roles of these highly conserved transcription factors.
Collapse
Affiliation(s)
| | - Emma I. Sherfinski
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Zoë A. Dobler
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Sarah N. Peterson
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | | | - Lindsay C. Fadel
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Regina L. Patrick
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, West, Virginia, USA
- Department of Neuroscience, West Virginia University, Morgantown, West, Virginia, USA
| |
Collapse
|
3
|
Talley MJ, Nardini D, Shabbir N, Ehrman LA, Prada CE, Waclaw RR. Generation of a Mouse Model to Study the Noonan Syndrome Gene Lztr1 in the Telencephalon. Front Cell Dev Biol 2021; 9:673995. [PMID: 34222248 PMCID: PMC8242193 DOI: 10.3389/fcell.2021.673995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The leucine zipper-like transcriptional regulator 1 (Lztr1) is a BTB-Kelch domain protein involved in RAS/MAPK pathway regulation. Mutations in LZTR1 are associated with cancers and Noonan syndrome, the most common RASopathy. The expression and function of Lztr1 in the developing brain remains poorly understood. Here we show that Lztr1 is expressed in distinct regions of the telencephalon, the most anterior region of the forebrain. Lztr1 expression was robust in the cortex, amygdala, hippocampus, and oligodendrocytes in the white matter. To gain insight into the impact of Lztr1 deficiency, we generated a conditional knockout (cKO) restricted to the telencephalon using Foxg1IREScre/+. Lztr1 cKOs are viable to postnatal stages and show reduced Lztr1 expression in the telencephalon. Interestingly, Lztr1 cKOs exhibit an increase in MAPK pathway activation in white matter regions and subsequently show an altered expression of stage-specific markers in the oligodendrocyte lineage with increased oligodendrocyte progenitor cells (OPCs) and decreased markers of oligodendrocyte differentiation. Moreover, Lztr1 cKOs also exhibit an increased expression of the astrocyte marker GFAP. These results highlight the generation of a new mouse model to study Lztr1 deficiency in the brain and reveal a novel role for Lztr1 in normal oligodendrocyte and astrocyte development in the telencephalon.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nisha Shabbir
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
AMPK-Regulated Astrocytic Lactate Shuttle Plays a Non-Cell-Autonomous Role in Neuronal Survival. Cell Rep 2021; 32:108092. [PMID: 32877674 PMCID: PMC7531170 DOI: 10.1016/j.celrep.2020.108092] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Lactate is used as an energy source by producer cells or shuttled to neighboring cells and tissues. Both glucose and lactate fulfill the bioenergetic demand of neurons, the latter imported from astrocytes. The contribution of astrocytic lactate to neuronal bioenergetics and the mechanisms of astrocytic lactate production are incompletely understood. Through in vivo1H magnetic resonance spectroscopy, 13C glucose mass spectroscopy, and electroencephalographic and molecular studies, here we show that the energy sensor AMP activated protein kinase (AMPK) regulates neuronal survival in a non-cell-autonomous manner. Ampk-null mice are deficient in brain lactate and are seizure prone. Ampk deletion in astroglia, but not neurons, causes neuronal loss in both mammalian and fly brains. Mechanistically, astrocytic AMPK phosphorylated and destabilized thioredoxin-interacting protein (TXNIP), enabling expression and surface translocation of the glucose transporter GLUT1, glucose uptake, and lactate production. Ampk loss in astrocytes causes TXNIP hyperstability, GLUT1 misregulation, inadequate glucose metabolism, and neuronal loss. Muraleedharan et al. demonstrate that AMPK is required for astrocytic glycolysis, lactate production, and lactate shuttle as an energy source to neurons such that AMPK loss in glia causes non-cell-autonomous neuronal loss in the mammalian and fly brain.
Collapse
|
5
|
Talley MJ, Nardini D, Qin S, Prada CE, Ehrman LA, Waclaw RR. A role for sustained MAPK activity in the mouse ventral telencephalon. Dev Biol 2021; 476:137-147. [PMID: 33775695 DOI: 10.1016/j.ydbio.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
The MAPK pathway is a major growth signal that has been implicated during the development of progenitors, neurons, and glia in the embryonic brain. Here, we show that the MAPK pathway plays an important role in the generation of distinct cell types from progenitors in the ventral telencephalon. Our data reveal that phospho-p44/42 (called p-ERK1/2) and the ETS transcription factor Etv5, both downstream effectors in the MAPK pathway, show a regional bias in expression during ventral telencephalic development, with enriched expression in the dorsal region of the LGE and ventral region of the MGE at E13.5 and E15.5. Interestingly, expression of both factors becomes more uniform in ventricular zone (VZ) progenitors by E18.5. To gain insight into the role of MAPK activity during progenitor cell development, we used a cre inducible constitutively active MEK1 allele (RosaMEK1DD/+) in combination with a ventral telencephalon enriched cre (Gsx2e-cre) or a dorsal telencephalon enriched cre (Emx1cre/+). Sustained MEK/MAPK activity in the ventral telencephalon (Gsx2e-cre; RosaMEK1DD/+) expanded dorsal lateral ganglionic eminence (dLGE) enriched genes (Gsx2 and Sp8) and oligodendrocyte progenitor cell (OPC) markers (Olig2, Pdgfrα, and Sox10), and also reduced markers in the ventral (v) LGE domain (Isl1 and Foxp1). Activation of MEK/MAPK activity in the dorsal telencephalon (Emx1cre/+; RosaMEK1DD/+) did not initially activate the expression of dLGE or OPC genes at E15.5 but ectopic expression of Gsx2 and OPC markers were observed at E18.5. These results support the idea that MAPK activity as readout by p-ERK1/2 and Etv5 expression is enriched in distinct subdomains of ventral telencephalic progenitors during development. In addition, sustained activation of the MEK/MAPK pathway in the ventral or dorsal telencephalon influences dLGE and OPC identity from progenitors.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shenyue Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Muraleedharan R, Nardini D, Waclaw RR, Dasgupta B. Analysis of reactive astrogliosis in mouse brain using in situ hybridization combined with immunohistochemistry. STAR Protoc 2021; 2:100375. [PMID: 33718893 PMCID: PMC7933799 DOI: 10.1016/j.xpro.2021.100375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries. Here, we present a revised in situ hybridization and immunohistochemistry (IHC) protocol to label the reactive astrocytes in the mouse brain. Several approaches for quantifying astrocyte reactivity lacked sensitivity to discriminate across the spectrum. We optimized in situ hybridization followed by IHC. We provide a staining protocol for quantitative measures of astrocyte reactivity as an independent confirmation of the magnitude of reactive gliosis. For complete details on the use and execution of this protocol, please refer to Muraleedharan et al. (2020).
Collapse
Affiliation(s)
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ronald Raymond Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Canonica GW, Malvezzi L, Blasi F, Paggiaro P, Mantero M, Senna G, Heffler E. Chronic rhinosinusitis with nasal polyps impact in severe asthma patients: Evidences from the Severe Asthma Network Italy (SANI) registry. Respir Med 2020; 166:105947. [PMID: 32250875 DOI: 10.1016/j.rmed.2020.105947] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The clinical and laboratory features of patients enrolled in the Severe Asthma Network in Italy (SANI) registry, a web-based observatory collecting demographic, clinical, functional and inflammatory data of patients with severe asthma were evaluated, with a special emphasis to chronic rhinosinusitis with nasal polyposis (CRSwNP). METHODS For each eligible patients the following information has been collected: demographic data, clinical features, asthma control in the previous month according to the GINA (Global INitiative for Asthma) Guidelines and standardized questionnaires, concomitant regular and on demand treatments and inflammatory markers. RESULTS 695 patients with severe asthma enrolled in 66 SANI centers were analyzed. The prevalence of chronic rhinosinusitis with nasal polyposis was 40.6%. Atopic dermatitis and bronchiectasis was significantly more frequent in patients with CRSwNP than in subjects without nasal polyposis; similarly, FeNO values are significantly higher in subject with CRSwNP than in patients without nasal polyposis. Finally, patients with CRSwNP had a significantly higher number of asthma exacerbations per year, more days on oral corticosteroids and were more likely to be OCS long term users. CONCLUSION OCS sparing is needed in patients with severe asthma, mainly in subjects with CRSwNP, adopting adequate strategies such as a better adherence to the treatment with inhaled therapy according to the GINA recommendations, the use of biologic agents and a multidisciplinary approach of the patient.
Collapse
Affiliation(s)
- Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Via Manzoni 56, 20089, Rozzano, MI, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy.
| | - Luca Malvezzi
- Otolaryngology, Humanitas Clinical and Research Center IRCCS, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Pierluigi Paggiaro
- Department of Surgery, Medicine, Molecular Biology and Critical Care, University of Pisa, Pisa, Italy
| | - Marco Mantero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, Verona University Hospital, Verona, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Via Manzoni 56, 20089, Rozzano, MI, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | | |
Collapse
|
8
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
9
|
Kiuchi Z, Nishibori Y, Kutsuna S, Kotani M, Hada I, Kimura T, Fukutomi T, Fukuhara D, Ito-Nitta N, Kudo A, Takata T, Ishigaki Y, Tomosugi N, Tanaka H, Matsushima S, Ogasawara S, Hirayama Y, Takematsu H, Yan K. GLCCI1 is a novel protector against glucocorticoid‐induced apoptosis in T cells. FASEB J 2019; 33:7387-7402. [DOI: 10.1096/fj.201800344rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zentaro Kiuchi
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Yukino Nishibori
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Satoru Kutsuna
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Masashi Kotani
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Ichiro Hada
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Toru Kimura
- Department of Toxicology and PharmacologyKyorin University School of MedicineTokyoJapan
| | - Toshiyuki Fukutomi
- Department of Toxicology and PharmacologyKyorin University School of MedicineTokyoJapan
| | - Daisuke Fukuhara
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Noriko Ito-Nitta
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| | - Akihiko Kudo
- Department of AnatomyKyorin University School of MedicineTokyoJapan
| | - Takanobu Takata
- Medical Research InstituteKanazawa Medical UniversityUchinada-machiJapan
| | - Yasuhito Ishigaki
- Medical Research InstituteKanazawa Medical UniversityUchinada-machiJapan
| | - Naohisa Tomosugi
- Medical Research InstituteKanazawa Medical UniversityUchinada-machiJapan
| | - Hirotoshi Tanaka
- Department of RheumatologyCenter for Antibody and Vaccine TherapyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Satsuki Matsushima
- Department of Laboratory MedicineKyorin University School of MedicineTokyoJapan
| | - Shinya Ogasawara
- Research and Development DepartmentDenka Seiken Company, LimitedGosenJapan
| | - Yoshiaki Hirayama
- Research and Development DepartmentDenka Seiken Company, LimitedGosenJapan
| | - Hiromu Takematsu
- Department of Biological ChemistryHuman Health ScienceKyoto University Graduate School of MedicineKyotoJapan
- Department of Molecular Cell BiologyFaculty of Medical TechnologyGraduate School of Health SciencesFujita Health University
| | - Kunimasa Yan
- Department of PediatricsKyorin University School of MedicineTokyoJapan
| |
Collapse
|
10
|
Chapman H, Riesenberg A, Ehrman LA, Kohli V, Nardini D, Nakafuku M, Campbell K, Waclaw RR. Gsx transcription factors control neuronal versus glial specification in ventricular zone progenitors of the mouse lateral ganglionic eminence. Dev Biol 2018; 442:115-126. [PMID: 29990475 PMCID: PMC6158017 DOI: 10.1016/j.ydbio.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
The homeobox gene Gsx2 has previously been shown to inhibit oligodendroglial specification in dorsal lateral ganglionic eminence (dLGE) progenitors of the ventral telencephalon. The precocious specification of oligodendrocyte progenitor cells (OPCs) observed in Gsx2 mutants, however, is transient and begins to normalize by late stages of embryogenesis. Interestingly, this normalization correlates with the expansion of Gsx1, a close homolog of Gsx2, in a subset of progenitors in the Gsx2 mutant LGE. Here, we interrogated the mechanisms underlying oligodendroglial specification in Gsx2 mutants in relation to Gsx1. We found that Gsx1/2 double mutant embryos exhibit a more robust expansion of Olig2+ cells (i.e. OPCs) in the subventricular zone (SVZ) of the dLGE than Gsx2 mutants. Moreover, misexpression of Gsx1 throughout telencephalic VZ progenitors from E15 and onward resulted in a significant reduction of cortical OPCs. These results demonstrate redundant roles of Gsx1 and Gsx2 in suppressing early OPC specification in LGE VZ progenitors. However, Gsx1/2 mutants did not show a significant increase in adjacent cortical OPCs at later stages compared to Gsx2 mutants. This is likely due to reduced proliferation of OPCs within the SVZ of the Gsx1/2 double mutant LGE, suggesting a novel role for Gsx1 in expansion of migrating OPCs in the ventral telencephalon. We further investigated the glial specification mechanisms downstream of Gsx2 by generating Olig2/Gsx2 double mutants. Consistent with the known essential role for Olig2 in OPC specification, ectopic production of cortical OPCs observed in Gsx2 mutants disappeared in Olig2/Gsx2 double mutants. These mutants, however, maintained the expanded expression of gliogenic markers Zbtb20 and Bcan in the VZ of the LGE similarly to Gsx2 single mutants, suggesting that Gsx2 suppresses gliogenesis via Olig2-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Heather Chapman
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Amy Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Vikram Kohli
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Ronald R Waclaw
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|