1
|
Matsubara H, Kawasumi-Kita A, Nara S, Yokoyama H, Hayashi T, Takeuchi T, Yokoyama H. Appendage-restricted gene induction using a heated agarose gel for studying regeneration in metamorphosed Xenopus laevis and Pleurodeles waltl. Dev Growth Differ 2023; 65:86-93. [PMID: 36680534 DOI: 10.1111/dgd.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 01/22/2023]
Abstract
Amphibians and fish often regenerate lost parts of their appendages (tail, limb, and fin) after amputation. Limb regeneration in adult amphibians provides an excellent model for appendage (limb) regeneration through 3D morphogenesis along the proximodistal, dorsoventral, and anteroposterior axes in mammals, because the limb is a homologous organ among amphibians and mammals. However, manipulating gene expression in specific appendages of adult amphibians remains difficult; this in turn hinders elucidation of the molecular mechanisms underlying appendage regeneration. To address this problem, we devised a system for appendage-specific gene induction using a simplified protocol named the "agarose-embedded heat shock (AeHS) method" involving the combination of a heat-shock-inducible system and insertion of an appendage in a temperature-controlled agarose gel. Gene expression was then induced specifically and ubiquitously in the regenerating limbs of metamorphosed amphibians, including a frog (Xenopus laevis) and newt (Pleurodeles waltl). We also induced gene expression in the regenerating tail of a metamorphosed P. waltl newt using the same method. This method can be applied to adult amphibians with large body sizes. Furthermore, this method enables simultaneous induction of gene expression in multiple individuals; further, the data are obtained in a reproducible manner, enabling the analysis of gene functions in limb and tail regeneration. Therefore, this method will facilitate elucidation of the molecular mechanisms underlying appendage regeneration in amphibians, which can support the development of regenerative therapies for organs, such as the limbs and spinal cord.
Collapse
Affiliation(s)
- Haruka Matsubara
- School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Aiko Kawasumi-Kita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Saki Nara
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Hibiki Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Toshinori Hayashi
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Takeuchi
- School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| |
Collapse
|
2
|
Hu Y, Pan X, Shi Y, Qiu Y, Wang L, Murawala P, Liu Y, Xing W, Tanaka EM, Fei JF. Muscles are barely required for the patterning and cell dynamics in axolotl limb regeneration. Front Genet 2022; 13:1036641. [PMID: 36299593 PMCID: PMC9589296 DOI: 10.3389/fgene.2022.1036641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of a complex appendage structure such as limb requires upstream and downstream coordination of multiple types of cells. Given type of cell may sit at higher upstream position to control the activities of other cells. Muscles are one of the major cell masses in limbs. However, the subtle functional relationship between muscle and other cells in vertebrate complex tissue regeneration are still not well established. Here, we use Pax7 mutant axolotls, in which the limb muscle is developmentally lost, to investigate limb regeneration in the absence of skeletal muscle. We find that the pattern of regenerated limbs is relative normal in Pax7 mutants compared to the controls, but the joint is malformed in the Pax7 mutants. Lack of muscles do not affect the early regeneration responses, specifically the recruitment of macrophages to the wound, as well as the proliferation of fibroblasts, another major population in limbs. Furthermore, using single cell RNA-sequencing, we show that, other than muscle lineage that is mostly missing in Pax7 mutants, the composition and the status of other cell types in completely regenerated limbs of Pax7 mutants are similar to that in the controls. Our study reveals skeletal muscle is barely required for the guidance of other cells, as well the patterning in complex tissue regeneration in axolotls, and provides refined views of the roles of muscle cell in vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Yan Hu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiangyu Pan
- Department of Medical Research, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuanhui Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Prayag Murawala
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| |
Collapse
|
3
|
McCusker C, Whited J, Monaghan J. Salamander models for elucidating mechanisms of developmental biology, evolution, and regeneration: Part two. Dev Dyn 2022; 251:903-905. [PMID: 35647817 DOI: 10.1002/dvdy.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Catherine McCusker
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jessica Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - James Monaghan
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
García-Lepe UO, Torres-Dimas E, Espinal-Centeno A, Cruz-Ramírez A, Bermúdez-Cruz RM. Evidence of requirement for homologous-mediated DNA repair during Ambystoma mexicanum limb regeneration. Dev Dyn 2022; 251:1035-1053. [PMID: 35040539 DOI: 10.1002/dvdy.455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Limb regeneration in the axolotl is achieved by epimorphosis, thus depending on the blastema formation, a mass of progenitor cells capable of proliferating and differentiating to recover all lost structures functionally. During regeneration, the blastema cells accelerate the cell cycle and duplicate its genome, which is inherently difficult to replicate because of its length and composition, thus being prone to suffer double-strand breaks. RESULTS We identified and characterized two remarkable components of the homologous recombination repair pathway (Amex.RAD51 and Amex.MRE11), which were heterologously expressed, biochemically characterized, and inhibited by specific chemicals. These same inhibitors were applied at different time points after amputation to study their effects during limb regeneration. We observed an increase in cellular senescent accompanied by a slight delay in regeneration at 28 days post-amputation regenerated tissues; moreover, inhibitors caused a rise in the double-strand break signaling as a response to the inhibition of the repair mechanisms. CONCLUSIONS We confirmed the participation and importance of homologous recombination during limb regeneration. Where the chemical inhibition induces double-strand breaks that lead to DNA damage associated senescence, or in an alternatively way, this damage could be possibly repaired by a different DNA repair pathway, permitting proper regeneration and avoiding senescence. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ulises Omar García-Lepe
- Genetics and Molecular Biology Department, Centro de Investigación y Estudios Avanzados del IPN Mexico city, Mexico
| | - Esteban Torres-Dimas
- Genetics and Molecular Biology Department, Centro de Investigación y Estudios Avanzados del IPN Mexico city, Mexico
| | - Annie Espinal-Centeno
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Rosa María Bermúdez-Cruz
- Genetics and Molecular Biology Department, Centro de Investigación y Estudios Avanzados del IPN Mexico city, Mexico
| |
Collapse
|
5
|
Abstract
The salamander Ambystoma mexicanum, commonly called "the axolotl" has a long, illustrious history as a model organism, perhaps with one of the longest track records as a laboratory-bred vertebrate, yet it also holds a prominent place among the emerging model organisms. Or rather it is by now an "emerged" model organism, boasting a full cohort molecular genetic tools that allows an expanding community of researchers in the field to explore the remarkable traits of this animal including regeneration, at cellular and molecular precision-which had been a dream for researchers over the years. This chapter describes the journey to this status, that could be helpful for those developing their respective animal or plant models.
Collapse
Affiliation(s)
- Karen Echeverri
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Jifeng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
6
|
Brayton CF. Laboratory Codes in Nomenclature and Scientific Communication (Advancing Organism Nomenclature in Scientific Communication to Improve Research Reporting and Reproducibility). ILAR J 2021; 62:295-309. [PMID: 36528817 DOI: 10.1093/ilar/ilac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.
Collapse
Affiliation(s)
- Cory F Brayton
- Johns Hopkins Medicine, Molecular and Comparative Pathobiology, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Al Haj Baddar N, Timoshevskaya N, Smith JJ, Guo H, Voss SR. Novel Expansion of Matrix Metalloproteases in the Laboratory Axolotl (Ambystoma mexicanum) and Other Salamander Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.786263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloprotease (MMP) genes encode endopeptidases that cleave protein components of the extracellular matrix (ECM) as well as non-ECM proteins. Here we report the results of a comprehensive survey of MMPs in the laboratory axolotl and other representative salamanders. Surprisingly, 28 MMPs were identified in salamanders and 9 MMP paralogs were identified as unique to the axolotl and other salamander taxa, with several of these presenting atypical amino acid insertions not observed in other tetrapod vertebrates. Furthermore, as assessed by sequence information, all of the novel salamander MMPs are of the secreted type, rather than cell membrane anchored. This suggests that secreted type MMPs expanded uniquely within salamanders to presumably execute catalytic activities in the extracellular milieu. To facilitate future studies of salamander-specific MMPs, we annotated transcriptional information from published studies of limb and tail regeneration. Our analysis sets the stage for comparative studies to understand why MMPs expanded uniquely within salamanders.
Collapse
|
8
|
Cura Costa E, Otsuki L, Rodrigo Albors A, Tanaka EM, Chara O. Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration. eLife 2021; 10:e55665. [PMID: 33988504 PMCID: PMC8205487 DOI: 10.7554/elife.55665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Collapse
Affiliation(s)
- Emanuel Cura Costa
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET) and University of La Plata (UNLP)La PlataArgentina
| | - Leo Otsuki
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC)ViennaAustria
| | - Aida Rodrigo Albors
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC)ViennaAustria
| | - Osvaldo Chara
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET) and University of La Plata (UNLP)La PlataArgentina
- Center for Information Services and High Performance Computing, Technische Universität DresdenDresdenGermany
| |
Collapse
|
9
|
Yun MH, Hayashi T, Simon A. Standardized gene and genetic nomenclature for the newt Pleurodeles waltl. Dev Dyn 2021; 251:911-912. [PMID: 33908668 DOI: 10.1002/dvdy.355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Maximina H Yun
- CRTD-Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | |
Collapse
|