1
|
Sun L, Wang J, Chen S, He Y. Crosstalk Between Wnt/β-Catenin and Hedgehog Supports Gli1+ Lineage Osteogenesis in Cranial Sutures. Int J Mol Sci 2025; 26:3508. [PMID: 40332045 PMCID: PMC12026649 DOI: 10.3390/ijms26083508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Sutures such as fibrous joints in craniofacial bones provide a niche for Gli1+ mesenchymal stem cells (MSCs) in promoting calvarial bone development and growth. However, the underlying molecular mechanism behind the fate of the Wnt/β-catenin regulation of Gli1+ MSCs during calvarial bone formation remains unclear. Here, we showed that β-catenin was colocalized with Gli1+ lineage cells near the osteogenic front within a suture, and postnatal skull development was delayed via a conditional knockout of Ctnnb1 in Gli1+ MSCs. Calcein-Alizarin Red dual staining revealed that Wnt/β-catenin signal inhibition impaired the rate of bone formation. Furthermore, immunofluorescent staining indicated that Wnt/β-catenin signaling was crucial in facilitating the proliferative capacity of Gli1+ MSCs and their commitment to the osteogenic lineage. Notably, activating hedgehog (Hh) signaling partially restored the suture morphology in Ctnnb1 knockout mice. Collectively, our findings revealed the crosstalk between Wnt and Hh signaling modulates the fate of Gli1+ MSCs during calvarial bone formation.
Collapse
Affiliation(s)
- Lin Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| | - Jie Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (L.S.); (J.W.)
- National Clinical Research Center for Oral Disease, Beijing 100081, China
| |
Collapse
|
2
|
Iwaya C, Suzuki A, Iwata J. Loss of Sc5d results in micrognathia due to a failure in osteoblast differentiation. J Adv Res 2024; 65:153-165. [PMID: 38086515 PMCID: PMC11519736 DOI: 10.1016/j.jare.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/01/2024] Open
Abstract
INTRODUCTION Mutations in genes related to cholesterol metabolism, or maternal diet and health status, affect craniofacial bone formation. However, the precise role of intracellular cholesterol metabolism in craniofacial bone development remains unclear. OBJECTIVE The aim of this study is to determine how cholesterol metabolism aberrations affect craniofacial bone development. METHODS Mice with a deficiency in Sc5d, which encodes an enzyme involved in cholesterol synthesis, were analyzed with histology, micro computed tomography (microCT), and cellular and molecular biological methods. RESULTS Sc5d null mice exhibited mandible hypoplasia resulting from defects in osteoblast differentiation. The activation of the hedgehog and WNT/β-catenin signaling pathways, which induce expression of osteogenic genes Col1a1 and Spp1, was compromised in the mandible of Sc5d null mice due to a failure in the formation of the primary cilium, a cell surface structure that senses extracellular cues. Treatments with an inducer of hedgehog or WNT/β-catenin signaling or with simvastatin, a drug that restores abnormal cholesterol production, partially rescued the defects in osteoblast differentiation seen in Sc5d mutant cells. CONCLUSION Our results indicate that loss of Sc5d results in mandibular hypoplasia through defective primary cilia-mediated hedgehog and WNT/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Herzeg A, Borges B, Diafos LN, Gupta N, MacKenzie TC, Sanders SJ. The Conundrum of Mechanics Versus Genetics in Congenital Hydrocephalus and Its Implications for Fetal Therapy Approaches: A Scoping Review. Prenat Diagn 2024; 44:1354-1366. [PMID: 39218781 DOI: 10.1002/pd.6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy, particularly for single-gene disorders (SGDs), have led to significant progress in developing innovative precision medicine approaches that hold promise for treating conditions such as primary hydrocephalus (CH), which is characterized by increased cerebrospinal fluid (CSF) volumes and cerebral ventricular dilation as a result of impaired brain development, often due to genetic causes. CH is a significant contributor to childhood morbidity and mortality and a driver of healthcare costs. In many cases, prenatal ultrasound can readily identify ventriculomegaly as early as 14-20 weeks of gestation, with severe cases showing poor neurodevelopmental outcomes. Postnatal surgical approaches, such as ventriculoperitoneal shunts, do not address the underlying genetic causes, have high complication rates, and result in a marginal improvement of neurocognitive deficits. Prenatal somatic cell gene therapy (PSCGT) promises a novel approach to conditions such as CH by targeting genetic mutations in utero, potentially improving long-term outcomes. To better understand the pathophysiology, genetic basis, and molecular pathomechanisms of CH, we conducted a scoping review of the literature that identified over 160 published genes linked to CH. Mutations in L1CAM, TRIM71, MPDZ, and CCDC88C play a critical role in neural stem cell development, subventricular zone architecture, and the maintenance of the neural stem cell niche, driving the development of CH. Early prenatal interventions targeting these genes could curb the development of the expected CH phenotype, improve neurodevelopmental outcomes, and possibly limit the need for surgical approaches. However, further research is needed to establish robust genotype-phenotype correlations and develop safe and effective PSCGT strategies for CH.
Collapse
Affiliation(s)
- Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Loukas N Diafos
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Nalin Gupta
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Stephan J Sanders
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Institute for Developmental and Regenerative Medicine, Oxford University, Oxford, UK
| |
Collapse
|
4
|
Ruan W, Chi D, Wang Y, Ma J, Huang Y. Rs28446116 in PTCH1 is associated with non-syndromic cleft lip with or without palate in the Ningxia population, China. Arch Oral Biol 2023; 149:105660. [PMID: 36870116 DOI: 10.1016/j.archoralbio.2023.105660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES To investigate the association between PTCH1 single nucleotide polymorphism(SNP) and non-syndromic cleft lip with or without palate (NSCL/P) in the Ningxia Hui Autonomous region and predict the function of single nucleotide polymorphism through bioinformatics analysis. DESIGN A case-control analysis of 31 single nucleotide polymorphism locus alleles on PTCH1 gene (504 cases and 455 controls) was performed to explore the association between PTCH1 gene polymorphisms and non-syndromic cleft lip with or without palate in Ningxia region. Transcription factors, 3D single nucleotide polymorphism and other related information of single nucleotide polymorphism loci with statistical significance were screened by the case-control experiments, and then analyzed the corresponding transcription factors through the NCBI database. RESULTS The case-control study showed that 5 of the 31 single nucleotide polymorphism loci rs357564 (P = 0.0233), rs1805155 (P = 0.0371), rs28446116 (P = 0.0408), rs2282041 (P = 0.0439), rs56119276 (P = 0.0256) had statistically significant differences in allele frequencies between the case and control groups. Bioinformatics analysis revealed that EP300 and RUNX3, among the transcription factors associated with rs28446116, may be associated with the development of non-syndromic cleft lip with or without palate. CONCLUSION PTCH1 gene may be associated with the occurrence of non-syndromic cleft lip with or without palate in the Ningxia region, which may be related to the role of EP300 and RUNX3 in the development of cleft lip and palate.
Collapse
Affiliation(s)
- Wenyan Ruan
- Ningxia Medical University, Yinchuan, Ningxia, China; State Key Laboratory of Military Stomatology; National Clinical Research Center for Oral Disease; Shaanxi Key laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Dandan Chi
- Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumeng Wang
- Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian Ma
- Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yongqing Huang
- Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
5
|
Sun L, Rong X, Liu X, Yu Z, Zhang Q, Ren W, Yang G, Xu S. Evolutionary genetics of flipper forelimb and hindlimb loss from limb development-related genes in cetaceans. BMC Genomics 2022; 23:797. [DOI: 10.1186/s12864-022-09024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood.
Results
In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer—ZRS in cetaceans—was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals.
Conclusions
We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.
Collapse
|
6
|
He Q, Hao X, Bao S, Wu X, Xu L, Hou Y, Huang Y, Peng L, Huang H, Ding Y, Zhao H. A392V and R945X mutations cause orofacial clefts via impairing PTCH1 function. Genomics 2022; 114:110507. [PMID: 36265746 DOI: 10.1016/j.ygeno.2022.110507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
The Hedgehog (HH) signaling plays key roles in embryogenesis and organogenesis, and its dysfunction causes a variety of human birth defects. Orofacial cleft (OFC) is one of the most common congenital craniofacial defects, and its etiology is closely related to mutations in multiple components in the HH pathway, including the PTCH1 receptor. A quantity of PTCH1 variants have been associated with OFC, but the pathogenicity and underlying mechanism of these variants have not been functionally validated. In our previous studies, we identified two PTCH1 variants (A392V and R945X) in two families with hereditary OFC. Here we explore the functional consequences of these two variants. In zebrafish embryos, microinjection of wild type PTCH1 mRNA causes curved body axis and craniofacial anomalies. In contrast, microinjection of A392V and R945X PTCH1 mRNAs results in much milder phenotypes, suggesting these two variants are loss-of-function mutations. In mammalian cells, A392V and R945X mutations reverse the inhibitory effect of PTCH1 on HH signaling. Biochemically, the two mutants PTCH1 show lower expression levels and shortened half-life, indicting these mutations decrease the stability of PTCH1. A392V and R945X mutations also appear to cause PTCH1 to localize away from vesicles. Taken together, our findings indicate that A392V and R945X variants are loss-of-function mutations that disrupt the function of PTCH1 and thus cause dysregulation of HH signaling, leading to the pathogenesis of OFC.
Collapse
Affiliation(s)
- Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xingke Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Shanying Bao
- Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, Qinghai, PR China
| | - Xiantao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Leiyuan Peng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, PR China.
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
7
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
8
|
Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021; 12:7132. [PMID: 34880220 PMCID: PMC8655033 DOI: 10.1038/s41467-021-27402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ana S. Gonzalez-Reiche
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Madrikha Saturne
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan M. Motch Perrine
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Xianxiao Zhou
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ana C. Borges
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bhavana Shewale
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Joan T. Richtsmeier
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Harm van Bakel
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ethylin Wang Jabs
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.21107.350000 0001 2171 9311Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
9
|
Fujii K, Zhulyn O, Byeon GW, Genuth NR, Kerr CH, Walsh EM, Barna M. Controlling tissue patterning by translational regulation of signaling transcripts through the core translation factor eIF3c. Dev Cell 2021; 56:2928-2937.e9. [PMID: 34752747 DOI: 10.1016/j.devcel.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.
Collapse
Affiliation(s)
- Kotaro Fujii
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Olena Zhulyn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Erin M Walsh
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Zhong W, Zhao H, Huang W, Zhang M, Zhang Q, Zhang Y, Chen C, Nueraihemaiti Z, Tuerhong D, Huang H, Maimaitili G, Chen F, Lin J. Identification of rare PTCH1 nonsense variant causing orofacial cleft in a Chinese family and an up-to-date genotype-phenotype analysis. Genes Dis 2020; 8:689-697. [PMID: 34291140 PMCID: PMC8278535 DOI: 10.1016/j.gendis.2019.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 01/09/2023] Open
Abstract
The Patched 1 (PTCH1) gene encodes a membrane receptor involved in the Hedgehog (Hh) signaling pathway, an abnormal state of which may result in congenital defects or human tumors. In this study, we conducted whole-exome sequencing on a three-generation Chinese family characterized with variable penetrance of orofacial clefts. A rare heterozygous variant in the PTCH1 gene (c.2833C > T p.R945X) was identified as a disease-associated mutation. Structural modeling revealed a truncation starting from the middle of the second extracellular domain of PTCH1 protein. This may damage its ligand recognition and sterol transportation abilities, thereby affecting the Hh signaling pathway. Biochemical assays indicated that the R945X protein had reduced stability compared to the wild-type in vitro. In addition, we reviewed the locations and mutation types of PTCH1 variants in individuals with clefting phenotypes, and analyzed the associations between clefts and locations or types of variants within PTCH1. Our findings provide further evidence that PTCH1 variants result in orofacial clefts, and contributed to genetic counseling and clinical surveillance in this family.
Collapse
Affiliation(s)
- Wenjie Zhong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Huaxiang Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Wenbin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Mengqi Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yue Zhang
- Department of Stomatology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, PR China
| | - Chong Chen
- Department of Stomatology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, PR China
| | | | | | - Huizhe Huang
- Chongqing Medical University, Chongqing, 400016, PR China
| | - Gulibaha Maimaitili
- Department of Stomatology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| |
Collapse
|
11
|
Topa A, Rohlin A, Andersson MK, Fehr A, Lovmar L, Stenman G, Kölby L. NGS targeted screening of 100 Scandinavian patients with coronal synostosis. Am J Med Genet A 2019; 182:348-356. [PMID: 31837199 DOI: 10.1002/ajmg.a.61427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Craniosynostosis (CS), the premature closure of one or more cranial sutures, occurs both as part of a syndrome or in isolation (nonsyndromic form). Here, we have studied the prevalence and spectrum of genetic alterations associated with coronal suture closure in 100 Scandinavian patients treated at a single craniofacial unit. All patients were phenotypically assessed and analyzed with a custom-designed 63 gene NGS-panel. Most cases (78%) were syndromic forms of CS. Pathogenic and likely pathogenic variants explaining the phenotype were found in 80% of the families with syndromic CS and in 14% of those with nonsyndromic CS. Sixty-five percent of the families had mutations in the CS core genes FGFR2, TWIST1, FGFR3, TCF12, EFNB1, FGFR1, and POR. Five novel pathogenic/likely pathogenic variants in TWIST1, TCF12, and EFNB1 were identified. We also found novel variants in SPECC1L, IGF1R, and CYP26B1 with a possible modulator phenotypic effect. Our findings demonstrate that NGS targeted sequencing is a powerful tool to detect pathogenic mutations in patients with coronal CS and further emphasize the importance of thorough assessment of the patient's phenotype for reliable interpretation of the molecular findings. This is particularly important in patients with complex phenotypes and rare forms of CS.
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias K Andersson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int J Oral Sci 2019; 11:3. [PMID: 30783111 PMCID: PMC6381108 DOI: 10.1038/s41368-018-0040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/09/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway is essential for cellular proliferation and differentiation during embryonic development. Gain and loss of function of Hh signalling are known to result in an array of craniofacial malformations. To determine the critical period for Hh pathway antagonist-induced frontal bone hypoplasia, we examined patterns of dysmorphology caused by Hh signalling inhibition. Pregnant mice received a single oral administration of Hh signalling inhibitor GDC-0449 at 100 mg•kg−1 or 150 mg•kg−1 body weight at preselected time points between embryonic days (E)8.5 and 12.5. The optimal teratogenic concentration of GDC-0449 was determined to be 150 mg•kg−1. Exposure between E9.5 and E10.5 induced frontal bone dysplasia, micrognathia and limb defects, with administration at E10.5 producing the most pronounced effects. This model showed decreased ossification of the frontal bone with downregulation of Hh signalling. The osteoid thickness of the frontal bone was significantly reduced. The amount of neural crest-derived frontal bone primordium was reduced after GDC-0449 exposure owing to a decreased rate of cell proliferation and increased cell death. During embryonic development, the Hedgehog signalling pathway regulates the migration, proliferation and differentiation of cranial neural crest cells in the early frontal bone. The Hedgehog signalling pathway transmits information to embryonic cells for their proper cell differentiation, and increased or reduced function of that signalling results in various craniofacial malformations. A team headed by Weihui Chen at Fujian Medical University in China investigated the patterns of abnormalities caused by inhibition of Hedgehog signalling in pregnant mice at preselected embryonic time points. The team was able to identify the critical period for sensitivity to GDC-0449, a potent Hedgehog signalling inhibitor. The authors believe that their mouse model can be effective in further investigating the mechanisms of craniofacial malformations and will have a profound impact on identifying candidate human disease genes and associated environmental factors.
Collapse
|
13
|
Xu R, Khan SK, Zhou T, Gao B, Zhou Y, Zhou X, Yang Y. Gα s signaling controls intramembranous ossification during cranial bone development by regulating both Hedgehog and Wnt/β-catenin signaling. Bone Res 2018; 6:33. [PMID: 30479847 PMCID: PMC6242855 DOI: 10.1038/s41413-018-0034-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
How osteoblast cells are induced is a central question for understanding skeletal formation. Abnormal osteoblast differentiation leads to a broad range of devastating craniofacial diseases. Here we have investigated intramembranous ossification during cranial bone development in mouse models of skeletal genetic diseases that exhibit craniofacial bone defects. The GNAS gene encodes Gαs that transduces GPCR signaling. GNAS activation or loss-of-function mutations in humans cause fibrous dysplasia (FD) or progressive osseous heteroplasia (POH) that shows craniofacial hyperostosis or craniosynostosis, respectively. We find here that, while Hh ligand-dependent Hh signaling is essential for endochondral ossification, it is dispensable for intramembranous ossification, where Gαs regulates Hh signaling in a ligand-independent manner. We further show that Gαs controls intramembranous ossification by regulating both Hh and Wnt/β-catenin signaling. In addition, Gαs activation in the developing cranial bone leads to reduced ossification but increased cartilage presence due to reduced cartilage dissolution, not cell fate switch. Small molecule inhibitors of Hh and Wnt signaling can effectively ameliorate cranial bone phenotypes in mice caused by loss or gain of Gnas function mutations, respectively. Our work shows that studies of genetic diseases provide invaluable insights in both pathological bone defects and normal bone development, understanding both leads to better diagnosis and therapeutic treatment of bone diseases.
Collapse
Affiliation(s)
- Ruoshi Xu
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA.,2State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sanjoy Kumar Khan
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA
| | - Taifeng Zhou
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA.,3Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA.,4Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhou
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA
| | - Xuedong Zhou
- 2State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA
| |
Collapse
|
14
|
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018; 99:302-314.e4. [PMID: 29983323 PMCID: PMC7839075 DOI: 10.1016/j.neuron.2018.06.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10-7), SMARCC1 (p = 8.15 × 10-10), and PTCH1 (p = 1.06 × 10-6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10-4). Together, these probands account for ∼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications.
Collapse
Affiliation(s)
- Charuta Gavankar Furey
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI 53706, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shreyas Panchagnula
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - August Allocco
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan R Gaillard
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Prince Antwi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Erin Loring
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer M Strahle
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gregory Heuer
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, WI 53726, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Irina Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | | | | | - Robert D Bjornson
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London WC1N 1AX, UK
| | - Bulent Guclu
- Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul 34860, Turkey
| | - Yasar Bayri
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Istanbul 34752, Turkey
| | - Yener Sahin
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Istanbul 34752, Turkey
| | - Michael L J Apuzzo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles C Duncan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kristopher T Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
15
|
Zhao H, Zhong W, Leng C, Zhang J, Zhang M, Huang W, Zhang Y, Li W, Jia P, Lin J, Maimaitili G, Chen F. A novel PTCH1
mutation underlies nonsyndromic cleft lip and/or palate in a Han Chinese family. Oral Dis 2018; 24:1318-1325. [PMID: 29908092 DOI: 10.1111/odi.12915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Huaxiang Zhao
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Wenjie Zhong
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Chuntao Leng
- Department of Stomatology; The Fifth Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Jieni Zhang
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Mengqi Zhang
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Wenbin Huang
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Yunfan Zhang
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Weiran Li
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Peizeng Jia
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Jiuxiang Lin
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Gulibaha Maimaitili
- Department of Stomatology; The Fifth Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Feng Chen
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
16
|
Disruption of Hedgehog Signaling by Vismodegib Leads to Cleft Palate and Delayed Osteogenesis in Experimental Design. J Craniofac Surg 2018; 28:1607-1614. [PMID: 28863112 DOI: 10.1097/scs.0000000000003790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The function of hedgehog signaling has previously been shown to be crucial for craniofacial development. In this study, we treated C57/BL6J mice with the hedgehog pathway inhibitor vismodegib by oral gavage to establish a stable vismodegib-induced cleft palate model. At E10.5 and E12.5, mice in the experimental group were treated with 100 mg/kg of vismodegib, whereas mice in the control group were treated with solvent. The treated pregnant mice were sacrificed on E13.5, E14.5, E15.5, and E16.5. Palatal shelf growth was evaluated via histological and immunohistochemical analyses as well as palatal organ culture. Immunohistochemical staining was performed to examine the expression of osteogenic proteins in the palatal tissue. A high proportion of the mice administered 2 doses of 100 mg/kg of vismodegib displayed a cleft palate. Histologic examination revealed severely retarded palatal shelf growth and thickened epithelium in the experimental group. Vismodegib exposure induced complete cleft palate, which was attributed to a reduced cell proliferation rate in the palatal mesenchyme along the anterior-posterior axis. Moreover, this model also showed delayed ossification in the region of palatine bone with downregulation of Indian hedgehog (Ihh) protein. Our results suggest that vismodegib can be used to inhibit hedgehog signaling to affect palatal morphogenesis. Under treatment with this exogenous inhibitor, the cell proliferation rate of the palatal shelves and the osteogenic potential of the hard palate were decreased, which likely contributed to the complete cleft palate.
Collapse
|
17
|
Veistinen LK, Mustonen T, Hasan MR, Takatalo M, Kobayashi Y, Kesper DA, Vortkamp A, Rice DP. Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Front Physiol 2017; 8:1036. [PMID: 29311969 PMCID: PMC5742257 DOI: 10.3389/fphys.2017.01036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Loss-of-function mutations in GLI3 and IHH cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that Ihh ligand, the receptor Ptch1 and Gli transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both Ihh-/- and Gli3Xt-J/Xt-J embryonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone development. RUNX2 is a master regulatory transcription factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expanded and aberrant osteogenesis observed in Gli3Xt-J/Xt-J mice, and consistent with Runx2-I expression by relatively immature osteoprogenitors. Ihh-/- mice exhibited small calvarial bones and HH target genes, Ptch1 and Gli1, were absent. This indicates that IHH is the functional HH ligand, and that it is not compensated by another HH ligand. To decipher the roles and potential interaction of Gli3 and Ihh, we generated Ihh-/-;Gli3Xt-J/Xt-J compound mutant mice. Even in the absence of Ihh, Gli3 deletion was sufficient to induce aberrant precocious ossification across the developing suture, indicating that the craniosynostosis phenotype of Gli3Xt-J/Xt-J mice is not dependent on IHH ligand. Also, we found that Ihh was not required for Runx2 expression as the expression of RUNX2 target genes was unaffected by deletion of Ihh. To test whether RUNX2 has a role upstream of IHH, we performed RUNX2 siRNA knock down experiments in WT calvarial osteoblasts and explants and found that Ihh expression is suppressed. Our results show that IHH is the functional HH ligand in the embryonic mouse calvaria osteogenic condensations, where it regulates the progression of osteoblastic differentiation. As GLI3 represses the expression of Runx2-II and Ihh, and also elevates the Runx2-I expression, and as IHH may be regulated by RUNX2 these results raise the possibility of a regulatory feedback circuit to control calvarial osteogenesis and suture patency. Taken together, RUNX2-controlled osteoblastic cell fate is regulated by IHH through concomitant inhibition of GLI3-repressor formation and activation of downstream targets.
Collapse
Affiliation(s)
- Lotta K Veistinen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Minerva Research Institute, Helsinki, Finland
| | - Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Yukiho Kobayashi
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dörthe A Kesper
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
18
|
Yu Y, Zuo X, He M, Gao J, Fu Y, Qin C, Meng L, Wang W, Song Y, Cheng Y, Zhou F, Chen G, Zheng X, Wang X, Liang B, Zhu Z, Fu X, Sheng Y, Hao J, Liu Z, Yan H, Mangold E, Ruczinski I, Liu J, Marazita ML, Ludwig KU, Beaty TH, Zhang X, Sun L, Bian Z. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat Commun 2017; 8:14364. [PMID: 28232668 PMCID: PMC5333091 DOI: 10.1038/ncomms14364] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
Non-syndromic cleft lip with palate (NSCLP) is the most serious sub-phenotype of non-syndromic orofacial clefts (NSOFC), which are the most common craniofacial birth defects in humans. Here we conduct a GWAS of NSCLP with multiple independent replications, totalling 7,404 NSOFC cases and 16,059 controls from several ethnicities, to identify new NSCLP risk loci, and explore the genetic heterogeneity between sub-phenotypes of NSOFC. We identify 41 SNPs within 26 loci that achieve genome-wide significance, 14 of which are novel (RAD54B, TMEM19, KRT18, WNT9B, GSC/DICER1, PTCH1, RPS26, OFCC1/TFAP2A, TAF1B, FGF10, MSX1, LINC00640, FGFR1 and SPRY1). These 26 loci collectively account for 10.94% of the heritability for NSCLP in Chinese population. We find evidence of genetic heterogeneity between the sub-phenotypes of NSOFC and among different populations. This study substantially increases the number of genetic susceptibility loci for NSCLP and provides important insights into the genetic aetiology of this common craniofacial malformation. Non-syndromic cleft lip with palate is a common birth defect of unknown aetiology. Here, the authors discover 14 new genes associated with this condition, and show genetic heterogeneity in this and other non-syndromic orofacial clefting disorders.
Collapse
Affiliation(s)
- Yanqin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xianbo Zuo
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.,Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jinping Gao
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuchuan Fu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chuanqi Qin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenjun Wang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yong Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Fusheng Zhou
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gang Chen
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhengwei Zhu
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiazhou Fu
- Department of Genetics and Centre for Developmental Biology, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jiebing Hao
- The Second Charity Hospital of Henan Province, Jiaozuo, Henan 454000, China
| | - Zhongyin Liu
- Stomatological Hospital of Nanyang, Nanyang, Henan 473013, China
| | - Hansong Yan
- Stomatological Hospital of Xiangyang, Xiangyang, Hubei 441011, China
| | - Elisabeth Mangold
- Institute of Human Genetics, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jianjun Liu
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mary L Marazita
- Department of Oral Biology and Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Clinical and Translational Science, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Kerstin U Ludwig
- Institute of Human Genetics, Life and Brain Center, University of Bonn, 53127 Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Terri H Beaty
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Dermatology at No. 2 Hospital, Anhui Medical University, Hefei, Anhui 230022, China.,Institute of Dermatology and Department of Dermatology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui 230032, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| |
Collapse
|
19
|
Salva JE, Merrill AE. Signaling networks in joint development. Dev Dyn 2016; 246:262-274. [PMID: 27859991 DOI: 10.1002/dvdy.24472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Topczewska JM, Shoela RA, Tomaszewski JP, Mirmira RB, Gosain AK. The Morphogenesis of Cranial Sutures in Zebrafish. PLoS One 2016; 11:e0165775. [PMID: 27829009 PMCID: PMC5102434 DOI: 10.1371/journal.pone.0165775] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Using morphological, histological, and TEM analyses of the cranium, we provide a detailed description of bone and suture growth in zebrafish. Based on expression patterns and localization, we identified osteoblasts at different degrees of maturation. Our data confirm that, unlike in humans, zebrafish cranial sutures maintain lifelong patency to sustain skull growth. The cranial vault develops in a coordinated manner resulting in a structure that protects the brain. The zebrafish cranial roof parallels that of higher vertebrates and contains five major bones: one pair of frontal bones, one pair of parietal bones, and the supraoccipital bone. Parietal and frontal bones are formed by intramembranous ossification within a layer of mesenchyme positioned between the dermal mesenchyme and meninges surrounding the brain. The supraoccipital bone has an endochondral origin. Cranial bones are separated by connective tissue with a distinctive architecture of osteogenic cells and collagen fibrils. Here we show RNA in situ hybridization for col1a1a, col2a1a, col10a1, bglap/osteocalcin, fgfr1a, fgfr1b, fgfr2, fgfr3, foxq1, twist2, twist3, runx2a, runx2b, sp7/osterix, and spp1/ osteopontin, indicating that the expression of genes involved in suture development in mammals is preserved in zebrafish. We also present methods for examining the cranium and its sutures, which permit the study of the mechanisms involved in suture patency as well as their pathological obliteration. The model we develop has implications for the study of human disorders, including craniosynostosis, which affects 1 in 2,500 live births.
Collapse
Affiliation(s)
- Jolanta M. Topczewska
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Ramy A. Shoela
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Joanna P. Tomaszewski
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Rupa B. Mirmira
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Arun K. Gosain
- Division of Pediatric Plastic Surgery, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
Durham EL, Howie RN, Black L, Bennfors G, Parsons TE, Elsalanty M, Yu JC, Weinberg SM, Cray JJ. Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. ACTA ACUST UNITED AC 2016; 106:803-813. [PMID: 27435288 DOI: 10.1002/bdra.23543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis. METHODS Here we investigate the influence of in utero and in vitro exogenous thyroid hormone exposure on a murine model of craniosynostosis, Twist 1 +/-. RESULTS By 15 days post-natal, there was evidence of coronal suture fusion in the Twist 1 +/- model, regardless of exposure. With the exception of craniofacial width, there were no significant effects of exposure; however, the Twist 1 +/- phenotype was significantly different from the wild-type control. Twist 1 +/- cranial suture cells did not respond to thyroxine treatment as measured by proliferation, osteogenic differentiation, and gene expression of osteogenic markers. However, treatment of these cells did result in modulation of thyroid associated gene expression. CONCLUSION Our findings suggest the phenotypic effects of the genetic mutation largely outweighed the effects of thyroxine exposure in the Twist 1 +/- model. These results highlight difficultly in experimentally modeling gene-environment interactions for craniosynostotic phenotypes. Birth Defects Research (Part A) 106:803-813, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, Augusta, Georgia.,Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia.,Department of Surgery, Division of Plastic Surgery, Augusta University, Augusta, Georgia
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
22
|
Xavier GM, Seppala M, Barrell W, Birjandi AA, Geoghegan F, Cobourne MT. Hedgehog receptor function during craniofacial development. Dev Biol 2016; 415:198-215. [PMID: 26875496 DOI: 10.1016/j.ydbio.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - William Barrell
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Anahid A Birjandi
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Finn Geoghegan
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
23
|
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Dev Biol 2016; 415:171-187. [PMID: 26808208 DOI: 10.1016/j.ydbio.2016.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T. MEMO1 drives cranial endochondral ossification and palatogenesis. Dev Biol 2015; 415:278-295. [PMID: 26746790 DOI: 10.1016/j.ydbio.2015.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023]
Abstract
The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base with more widespread effects on craniofacial shape relevant to human craniofacial dysmorphology.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4002 Basel, Switzerland
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lee Niswander
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Trinh TN, McLaughlin EA, Gordon CP, McCluskey A. Hedgehog signalling pathway inhibitors as cancer suppressing agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00334e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|